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Gyroscope

Gyroscope: a device for measuring or maintaining orientation
Example: Classical Gyroscope

Gyroscope Spin axis
frame

Gimbal Rotor
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Classical Gyroscope

MOVIE: How to work classical gyroscope
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Classical Gyroscope

MOVIE: How to work classical gyroscope
Based on the conservation of angular momentum
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Classical Gyroscope: airplane sensor

Sperry vertical gyro for Boeing 747 (airplane)
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Laser Gyroscope

mirror

laser output

© 2004 Encyclopadia Britannica, Inc

Figure: ring laser gyro (from Encyclopedia Britannica)

Based on the relativity
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Laser Gyroscope

mirror

laser output
© 2004 Encyclopadia Britannica, Inc

Figure: ring laser gyro (from Encyclopedia Britannica)

Based on the relativity
Used in Boeing 777,787; Airbus A320 330/340,A380 etc.(airplane);
Atlas 1/11/111/V, H-1IA/B etc.(rocket)

/21



Laser Gyroscope: Sagnac effect

Figure: Light traveling opposite directions

Rotating circular ring
R : radius, w : angular velocity, ¢ : speed of light (1)

A light source emits in both directions from one point on the ring

6
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Laser Gyroscope: Sagnac effect
» Light traveling in the same direction as the rotation
It needs a catch up time t; as

2R+ AL

C

3]
AL : distance of rotating ring in the interval ¢;

AL = Rwty (3)
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Laser Gyroscope: Sagnac effect

» Light traveling in the same direction as the rotation
It needs a catch up time t; as

2R+ AL

t 2
1 . (2)
AL : distance of rotating ring in the interval ¢;

AL = Rwt; (3)

Therefore
2tR

= 4
g c— Rw (4)
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Laser Gyroscope: Sagnac effect
» Light traveling in the same direction as the rotation
It needs a catch up time t; as

2R+ AL

C

t1

AL : distance of rotating ring in the interval ¢;

AL = thl
Therefore
o 2tR
1= c— Rw

» Light traveling in the opposite direction as the rotation

b 2tR
270+Rw
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Laser Gyroscope: Sagnac effect

The time difference:

At =11 —tg =

47 R%w

2 _ R2u2
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Laser Gyroscope: Sagnac effect

The time difference:

47 R?
At =t —ty= v

For Rw=v<c
N 47 R%w B 4Aw

c? c?

At

where A = 7R? is the area of the ring.

2 _ R2u2
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Laser Gyroscope
How to detect time difference?
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Laser Gyroscope

How to detect time difference?
Interference of the light waves
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Laser Gyroscope
How to detect time difference?
Interference of the light waves

phase shift
_ 2mcAt

A¢ 3

A: wavelength
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Laser Gyroscope
How to detect time difference?
Interference of the light waves
phase shift

A: wavelength
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Laser Gyroscope: Sagnac effect

Figure:

For good interference, high quality light source is needed
— Laser
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Quantum Gyroscope

Using the quantum interference
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Quantum Gyroscope

Using the quantum interference
only laboratory at present

» cold neutron (finite lifetime)
» laser cooled atomic gases (nK)
» superfluid He (2.17 K (*He); 2.49 m K (*He))
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Short quantum physics; wave-particle duality

» wave behaves as a particle
> Energy F
he
E=h=— 9
v=" (9)
(h:Planck constant, v: frequency, A: wave length)
» momentum p
h
A

p= (10)
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Short quantum physics; wave-particle duality

» wave behaves as a particle
> Energy F

he
E = = —
hv 3 (9)

(h:Planck constant, v: frequency, A: wave length)
» momentum p

h
p= b (10)
> particle behaves as a wave
h h
A=—= — (11)
p  mu

de Broglie theory
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Short thermodynamics; Superfluidity

Atoms in the ideal gas (statistical mechanics)
MOVIE: Motion of gas atoms
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Short thermodynamics; Superfluidity

Atoms in the ideal gas (statistical mechanics)
MOVIE: Motion of gas atoms
average velocity of atoms

1
ngT = Jm?)

» kg: Boltzmann constant

» T': temperature

(12)
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Quantum phase transition

Lowering temperature, average velocity of atoms becomes slowing
down.

_>

Wave length of atoms become larger

4)

Quantum interference becomes important at low temperatures
MOVIE: Bose-Einstein Condensation
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Quantum phase transition

Lowering temperature, average velocity of atoms becomes slowing
down.

_>

Wave length of atoms become larger

4)

Quantum interference becomes important at low temperatures
MOVIE: Bose-Einstein Condensation

Factors for quantum transitions:

» Temperature

> Density

v

Mass of particles
» Fermion or Boson
Dimensionality (2D or 3D)

v
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Superfluidity

15

C, [igK]

10

T

0_ 25
TIKI

Figure: heat capacity

Figure: zero viscosity

Qe
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Quantum Gyroscope: Superfluid Gyro

Veak links

4
3

Electrode —
S

X0

Membrane

Figure:

R. W. Simmonds, A. Marchenkov, E. Hoskinson, J. C. Davis and R. E. Packard: Nature 412, 55-58 (2001)
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Quantum Gyroscope: Superfluid Gyro

Interference pattern
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Figure:
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Quantum Gyroscope: Superfluid Gyro

Weak Junction

S. Narayana and Y. Sato: Phys. Rev. Lett. 106, 055302 (2011)
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Quantum Gyroscope: Superfluid Gyro

(13)

(QQ-A)
I.oxcos|m -

v

I.: current

€: Rotation vector

v

A: Area vector

v

v

ks = h/(2ms): quantum of circulation of 3He

h: Planck constant

v
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Conclusion

Comparison between laser and superfluid gyros
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Conclusion

Comparison between laser and superfluid gyros
effective mass of light (frequency w)

Miight & hw /¢’ (14)
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Conclusion

Comparison between laser and superfluid gyros
effective mass of light (frequency w)

N 2
Miight ~ hw/c

Superfluid gyro is expected highly sensitve!

(14)
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Thank you for your attention.
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