Quantum Gyroscope

Kiyohide NOMURA

Department of Physics, Kyushu University

Gyroscope

Gyroscope: a device for measuring or maintaining orientation Example: Classical Gyroscope

Classical Gyroscope

MOVIE: How to work classical gyroscope

Classical Gyroscope

MOVIE: How to work classical gyroscope Based on the conservation of angular momentum

Classical Gyroscope: airplane sensor

Sperry vertical gyro for Boeing 747 (airplane)

Laser Gyroscope

Figure: ring laser gyro (from Encyclopedia Britannica)

Based on the relativity

Laser Gyroscope

Figure: ring laser gyro (from Encyclopedia Britannica)

Based on the relativity Used in Boeing 777,787; Airbus A320 330/340,A380 etc.(airplane); Atlas I/II/III/V, H-IIA/B etc.(rocket)

Laser Gyroscope: Sagnac effect

Figure: Light traveling opposite directions

Rotating circular ring

$$
\begin{equation*}
R: \text { radius, } \omega: \text { angular velocity, } c: \text { speed of light } \tag{1}
\end{equation*}
$$

A light source emits in both directions from one point on the ring

Laser Gyroscope: Sagnac effect

- Light traveling in the same direction as the rotation It needs a catch up time t_{1} as

$$
\begin{equation*}
t_{1}=\frac{2 \pi R+\Delta L}{c} \tag{2}
\end{equation*}
$$

ΔL : distance of rotating ring in the interval t_{1}

$$
\begin{equation*}
\Delta L=R \omega t_{1} \tag{3}
\end{equation*}
$$

Laser Gyroscope: Sagnac effect

- Light traveling in the same direction as the rotation It needs a catch up time t_{1} as

$$
\begin{equation*}
t_{1}=\frac{2 \pi R+\Delta L}{c} \tag{2}
\end{equation*}
$$

ΔL : distance of rotating ring in the interval t_{1}

$$
\begin{equation*}
\Delta L=R \omega t_{1} \tag{3}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
t_{1}=\frac{2 \pi R}{c-R \omega} \tag{4}
\end{equation*}
$$

Laser Gyroscope: Sagnac effect

- Light traveling in the same direction as the rotation It needs a catch up time t_{1} as

$$
\begin{equation*}
t_{1}=\frac{2 \pi R+\Delta L}{c} \tag{2}
\end{equation*}
$$

ΔL : distance of rotating ring in the interval t_{1}

$$
\begin{equation*}
\Delta L=R \omega t_{1} \tag{3}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
t_{1}=\frac{2 \pi R}{c-R \omega} \tag{4}
\end{equation*}
$$

- Light traveling in the opposite direction as the rotation

$$
\begin{equation*}
t_{2}=\frac{2 \pi R}{c+R \omega} \tag{5}
\end{equation*}
$$

Laser Gyroscope: Sagnac effect

The time difference:

$$
\begin{equation*}
\Delta t=t_{1}-t_{2}=\frac{4 \pi R^{2} \omega}{c^{2}-R^{2} \omega^{2}} \tag{6}
\end{equation*}
$$

Laser Gyroscope: Sagnac effect

The time difference:

$$
\begin{equation*}
\Delta t=t_{1}-t_{2}=\frac{4 \pi R^{2} \omega}{c^{2}-R^{2} \omega^{2}} \tag{6}
\end{equation*}
$$

For $R \omega=v \ll c$

$$
\begin{equation*}
\Delta t \approx \frac{4 \pi R^{2} \omega}{c^{2}}=\frac{4 A \omega}{c^{2}} \tag{7}
\end{equation*}
$$

where $A=\pi R^{2}$ is the area of the ring.

Laser Gyroscope

How to detect time difference?

Laser Gyroscope

How to detect time difference?
Interference of the light waves

Laser Gyroscope

How to detect time difference?
Interference of the light waves phase shift

$$
\begin{equation*}
\Delta \phi=\frac{2 \pi c \Delta t}{\lambda} \tag{8}
\end{equation*}
$$

λ : wavelength

Laser Gyroscope

How to detect time difference?
Interference of the light waves phase shift

$$
\begin{equation*}
\Delta \phi=\frac{2 \pi c \Delta t}{\lambda} \tag{8}
\end{equation*}
$$

λ : wavelength

Figure:

Laser Gyroscope: Sagnac effect

Figure:

For good interference, high quality light source is needed \rightarrow Laser

Quantum Gyroscope

Using the quantum interference

Quantum Gyroscope

Using the quantum interference
only laboratory at present

- cold neutron (finite lifetime)
- laser cooled atomic gases (nK)
- superfluid He (2.17 K (${ }^{4} \mathrm{He}$); $2.49 \mathrm{~m} \mathrm{~K}\left({ }^{3} \mathrm{He}\right)$)

Short quantum physics; wave-particle duality

- wave behaves as a particle
- Energy E

$$
\begin{equation*}
E=h \nu=\frac{h c}{\lambda} \tag{9}
\end{equation*}
$$

(h :Planck constant, ν : frequency, λ : wave length)

- momentum p

$$
\begin{equation*}
p=\frac{h}{\lambda} \tag{10}
\end{equation*}
$$

Short quantum physics; wave-particle duality

- wave behaves as a particle
- Energy E

$$
\begin{equation*}
E=h \nu=\frac{h c}{\lambda} \tag{9}
\end{equation*}
$$

(h :Planck constant, ν : frequency, λ : wave length)

- momentum p

$$
\begin{equation*}
p=\frac{h}{\lambda} \tag{10}
\end{equation*}
$$

- particle behaves as a wave

$$
\begin{equation*}
\lambda=\frac{h}{p}=\frac{h}{m v} \tag{11}
\end{equation*}
$$

de Broglie theory

Short thermodynamics; Superfluidity

Atoms in the ideal gas (statistical mechanics) MOVIE: Motion of gas atoms

Short thermodynamics; Superfluidity

Atoms in the ideal gas (statistical mechanics) MOVIE: Motion of gas atoms
average velocity of atoms

$$
\begin{equation*}
\frac{3}{2} k_{B} T=\frac{1}{2} m\left\langle\boldsymbol{v}^{2}\right\rangle \tag{12}
\end{equation*}
$$

- k_{B} : Boltzmann constant
- T : temperature

Quantum phase transition

Lowering temperature, average velocity of atoms becomes slowing down.
\rightarrow
Wave length of atoms become larger
\rightarrow
Quantum interference becomes important at low temperatures MOVIE: Bose-Einstein Condensation

Quantum phase transition

Lowering temperature, average velocity of atoms becomes slowing down.
\rightarrow
Wave length of atoms become larger
\rightarrow
Quantum interference becomes important at low temperatures MOVIE: Bose-Einstein Condensation
Factors for quantum transitions:

- Temperature
- Density
- Mass of particles
- Fermion or Boson
- Dimensionality (2D or 3D)

Superfluidity

Figure: heat capacity

Figure: zero viscosity

Quantum Gyroscope: Superfluid Gyro

Figure:
R. W. Simmonds, A. Marchenkov, E. Hoskinson, J. C. Davis and R. E. Packard: Nature 412, $55-58$ (2001)

Quantum Gyroscope: Superfluid Gyro

Interference pattern

Figure:

Quantum Gyroscope: Superfluid Gyro

Weak Junction

Figure:
S. Narayana and Y. Sato: Phys. Rev. Lett. 106, 055302 (2011)

Quantum Gyroscope: Superfluid Gyro

$$
\begin{equation*}
I_{c} \propto \cos \left(\pi \frac{2 \boldsymbol{\Omega} \cdot \boldsymbol{A}}{\kappa_{s}}\right) \tag{13}
\end{equation*}
$$

- I_{c} : current
- Ω : Rotation vector
- A: Area vector
- $\kappa_{s}=h /\left(2 m_{s}\right)$: quantum of circulation of ${ }^{3} \mathrm{He}$
- h : Planck constant

Conclusion

Comparison between laser and superfluid gyros

Conclusion

Comparison between laser and superfluid gyros effective mass of light (frequency ω)

$$
\begin{equation*}
m_{\mathrm{light}} \approx h \omega / c^{2} \tag{14}
\end{equation*}
$$

Conclusion

Comparison between laser and superfluid gyros effective mass of light (frequency ω)

$$
\begin{equation*}
m_{\mathrm{light}} \approx h \omega / c^{2} \tag{14}
\end{equation*}
$$

Superfluid gyro is expected highly sensitve!

Thank you for your attention.

