Quantum Gyroscope

Kiyohide NOMURA

Department of Physics, Kyushu University

Gyroscope

Gyroscope: a device for measuring or maintaining orientation Example: Classical Gyroscope

Classical Gyroscope

MOVIE: How to work classical gyroscope

Classical Gyroscope

MOVIE: How to work classical gyroscope Based on the conservation of angular momentum

Classical Gyroscope: airplane sensor

Sperry vertical gyro for Boeing 747 (airplane)

Figure: ring laser gyro (from Encyclopedia Britannica)

Based on the relativity

Figure: ring laser gyro (from Encyclopedia Britannica)

Based on the relativity Used in Boeing 777,787; Airbus A320 330/340,A380 etc.(airplane); Atlas I/II/III/V, H-IIA/B etc.(rocket)

Figure: Light traveling opposite directions

Rotating circular ring

R : radius, ω : angular velocity, c : speed of light (1) A light source emits in both directions from one point on the ring

 Light traveling in the same direction as the rotation It needs a catch up time t₁ as

$$t_1 = \frac{2\pi R + \Delta L}{c} \tag{2}$$

 ΔL : distance of rotating ring in the interval t_1

$$\Delta L = R\omega t_1 \tag{3}$$

 Light traveling in the same direction as the rotation It needs a catch up time t₁ as

$$t_1 = \frac{2\pi R + \Delta L}{c} \tag{2}$$

 ΔL : distance of rotating ring in the interval t_1

$$\Delta L = R\omega t_1 \tag{3}$$

Therefore

$$t_1 = \frac{2\pi R}{c - R\omega} \tag{4}$$

 Light traveling in the same direction as the rotation It needs a catch up time t₁ as

$$t_1 = \frac{2\pi R + \Delta L}{c} \tag{2}$$

 ΔL : distance of rotating ring in the interval t_1

$$\Delta L = R\omega t_1 \tag{3}$$

Therefore

$$t_1 = \frac{2\pi R}{c - R\omega} \tag{4}$$

Light traveling in the opposite direction as the rotation

$$t_2 = \frac{2\pi R}{c + R\omega} \tag{5}$$

The time difference:

$$\Delta t = t_1 - t_2 = \frac{4\pi R^2 \omega}{c^2 - R^2 \omega^2}$$
(6)

◆□→ ◆圖→ ◆注→ ◆注→ □注

The time difference:

$$\Delta t = t_1 - t_2 = \frac{4\pi R^2 \omega}{c^2 - R^2 \omega^2}$$
(6)

イロン イヨン イヨン イヨン 三日

8/21

For
$$R\omega = v \ll c$$

$$\Delta t \approx \frac{4\pi R^2 \omega}{c^2} = \frac{4A\omega}{c^2}$$
(7)

where $A = \pi R^2$ is the area of the ring.

How to detect time difference?

How to detect time difference? Interference of the light waves

How to detect time difference? Interference of the light waves phase shift

$$\Delta \phi = \frac{2\pi c \Delta t}{\lambda} \tag{8}$$

<ロ> (四) (四) (三) (三) (三) (三)

9/21

 $\lambda:$ wavelength

How to detect time difference? Interference of the light waves phase shift

$$\Delta \phi = \frac{2\pi c \Delta t}{\lambda} \tag{8}$$

イロト イポト イヨト イヨト

 $\lambda:$ wavelength

Figure:

Figure:

For good interference, high quality light source is needed $\rightarrow \mathsf{Laser}$

Quantum Gyroscope

Using the quantum interference

Quantum Gyroscope

Using the quantum interference only laboratory at present

- cold neutron (finite lifetime)
- laser cooled atomic gases (nK)
- ▶ superfluid He (2.17 K (⁴He); 2.49 m K (³He))

Short quantum physics; wave-particle duality

- wave behaves as a particle
 - ► Energy E

$$E = h\nu = \frac{hc}{\lambda} \tag{9}$$

(h:Planck constant, ν : frequency, λ : wave length)

▶ momentum p

$$p = \frac{h}{\lambda} \tag{10}$$

Short quantum physics; wave-particle duality

wave behaves as a particle

► Energy E

$$E = h\nu = \frac{hc}{\lambda} \tag{9}$$

(*h*:Planck constant, ν : frequency, λ : wave length)

▶ momentum p

$$p = \frac{h}{\lambda} \tag{10}$$

particle behaves as a wave

$$\lambda = \frac{h}{p} = \frac{h}{mv} \tag{11}$$

de Broglie theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Short thermodynamics; Superfluidity

Atoms in the ideal gas (statistical mechanics) MOVIE: Motion of gas atoms

Short thermodynamics; Superfluidity

Atoms in the ideal gas (statistical mechanics) MOVIE: Motion of gas atoms average velocity of atoms

$$\frac{3}{2}k_BT = \frac{1}{2}m\langle \boldsymbol{v}^2 \rangle \tag{12}$$

- ► *k*_B: Boltzmann constant
- ► T: temperature

Quantum phase transition

Lowering temperature, average velocity of atoms becomes slowing down.

Wave length of atoms become larger

 \rightarrow

 \rightarrow

 $\label{eq:Quantum interference becomes important at low temperatures MOVIE: Bose-Einstein Condensation$

Quantum phase transition

Lowering temperature, average velocity of atoms becomes slowing down.

```
Wave length of atoms become larger
```

 \rightarrow

 \rightarrow

Quantum interference becomes important at low temperatures MOVIE: Bose-Einstein Condensation Factors for quantum transitions:

- Temperature
- Density
- Mass of particles
- Fermion or Boson
- Dimensionality (2D or 3D)

Superfluidity

Figure: heat capacity

Figure: zero viscosity

Figure:

R. W. Simmonds, A. Marchenkov, E. Hoskinson, J. C. Davis and R. E. Packard: Nature 412, 55-58 (2001)

Interference pattern

Figure:

イロト イポト イヨト イヨト

Weak Junction

Figure:

S. Narayana and Y. Sato: Phys. Rev. Lett. 106, 055302 (2011)

$$I_c \propto \cos\left(\pi \frac{2\mathbf{\Omega} \cdot \mathbf{A}}{\kappa_s}\right) \tag{13}$$

(日) (四) (注) (注) (三)

19/21

► *I_c*: current

- Ω: Rotation vector
- A: Area vector
- $\kappa_s = h/(2m_s)$: quantum of circulation of ³He
- h: Planck constant

Conclusion

Comparison between laser and superfluid gyros

Conclusion

Comparison between laser and superfluid gyros effective mass of light (frequency ω)

$$m_{\rm light} \approx h\omega/c^2$$
 (14)

(日) (四) (注) (注) (注) (三)

Conclusion

Comparison between laser and superfluid gyros effective mass of light (frequency ω)

$$m_{\rm light} \approx h\omega/c^2$$
 (14)

Superfluid gyro is expected highly sensitve!

Thank you for your attention.