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Chapter O

The Many-Body Problem for Everybody

0.0 Wha¢ the many-body problem is about

The many-body problem has attracted attention ever since the philosophers
of old speculated over the question of how many angels could dance on the
head of a pin. In the angel problem, as in all many-body problems, there are
two essential ingredients. First of all, there have to be many bodies present—
many angels, many electrons, many atoms, many molecules, many people, etc.
Secondly, for there to be a problem, these bodies have to interact with each
other. To see why this is so, suppose the bodies did not interact. Then each
body would act independently of all the others, so that we could simply
investigate the behaviour of each body separately. In other words, without
interaction, instead of having one many-body problem, we would have many
one-body problems. Thus, interactions are essential, and in fact the many-body
problem may be defined as the study of the effects of interaction between bodies
on the behaviour of a many-body system.

(It might be noted here, for the benefit of those interested in exact solutions,
that there is an alternative formulation of the many-body problem, i.e., how
many bodies are required before we have a problem? G. E. Brown points out
that this can be answered by a look at history. In eighteenth-century New-
tonian mechanics, the three-body problem was insoluble. With the birth of
general relativity around 1910 and quantum electrodynamics in 1930, the
two- and one-body problems became insoluble, And within modern quantum
field theory, the problem of zero bodies (vacuum) is insoluble. So, if we are
out after exact solutions, no bodies at all is already too many!)

The importance of the many-body problem derives from the fact that
almost any real physical system one can think of is composed of a set of inter-
acting particles. For example, nucleons in a nucleus interact by nuclear
forces, electrons in an atom or metal interact by Coulomb forces, etc. Some
examples are shown schematically in Fig. 0.1. Furthermore, it turns out that
in the calculation of physical properties of such systems—for example, the
energy leveis of the atom, or magnetic susceptibility of the metal—interactions
between particles play a very important role.

It should be clear from the variety of systems in Fig. 0.1 that the many-body
problem is not a branch of solid state, or nuclear, or atomic physics, etc. It
deals rather with general methods applicable to alf many-body systems.

i
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Fig. 0.1 Some Many-body Systems

The many-body problem is an extraordinarily difficult one because of the
incredibly intricate motions of the particles in an interacting system. InFig.0.2
we contrast the simple behaviour of non-interacting particles with the compli-
cated behaviour of interacting ones. Because of the complexity of the many-
body problem, not much progress was made with it for a long time. In fact
one of the preferred methods for solving the problem was simply to ignore it,
i.e., pretend there were no interactions present. (Surprisingly enough, in some
cases this ‘method’ produced good results anyway, and one of the great
mysteries was how this could be possibie!)
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Fig. 0.2 A. Non-interacting Particles .
B. Interacting Particles

Another of the early approaches to the problem, and one which is still used
extensively today is the canonical transformation technique, described in
appendix . This involves transforming the basic equations of the many-body
system to a new set of coordinates in which the interaction term becomes small.
Although considerable success has been achieved with this technique, it is not
as systematic as one would like, and this sometimes makes it difficult to apply.
It was this lack of a systematic method which kept the many-body field in its
cradle well up into the 1950s.
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The situation changed radically in 1956-7. In a series of pioneering papers,
it was shown that the methods of quantum field theory, already famous for its
success in elementary particle physics, provided a powerful, unified way of
attacking the many-body problemn. The new key opened many doors, and in
rapid succession the idea was applied to nuclei, electrons in metals, ferro-
magnets, atoms, superconductors, plasmas, molecules—virtually everything
in sight.

From that time on, much of the most exciting and fundamental research
into the nature of matter has been based on the quantum field theory method.
One of the things emerging from this research is a new simple picture of matter
in which systems of interacting real particles are described in terms of approxi-
mately non-interacting fictitious bodies called *quasi particles’ and *collective
excitations’. Another thing is new results for calculated physical guantities
which are in excellent agreement with experiment—for example, energy levels
of light atoms, binding energy of nuclear matter, Fermi energy and effective
electron mass in a variety of metals.

In this introductory chapter, we will give a physical picture of quasi particles
and collective excitations. Then in the next chapter we show qualitatively how
to describe quasi particles and calculate their properties by means of the
quantum field theoretical technique known as the method of Feynman diagrams.

0.1, Simple example of non-interacting fictitions bodies

As mentioned at the beginning, one of nature’s little surprises is that many-
body systems often behave as if the bodies of which they are composed hardly
interact at all!l The reason for this is that the ‘bodies’ involved are not real
but fictitious. That is, the system composed of strongly interacting real bodies
acts as if it were composed of weakly interacting (or non-interacting) fictitious
bodies. We consider now a very simple example of how this can occur.

Suppose we have two masses, m; and m; held together by a strong spring as
shown in Fig. 0.3. That is, our system here consists of two strongly coupled
real bodies. If this contraption is tossed up in a gravitational field, the motion
of each body considered separately is very complicated because of the strong
interaction (spring force) between the bodies. '

centre of mass

Fig. 0.3 Two-body System
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However, we can break up the complicated motion into two independent
simple motions: motion of the centre of mass and motion about the centre of
mass. The centre of mass moves exactly as if it were an independent body of
mass m, +n,, so it is one of the non-interacting fictitious bodies here. The
other fictitious body is a body of mass m, »2;/(m, + m;)—the so-called ‘reduced
mass’—which moves independently relative to the centre of mass. Thus the
system acts as if it were composed of two non-interacting fictitious bodies:
the ‘centre of mass body’ and the ‘reduced mass body’. (See appendix &,
eqs. (. 11)(s7.14) for details.)

0.2 Quast particles and quasi horses

The above two-body example is easy enough to understand, but finding the
weakly interacting fictitious bodies in a set of many strongly interacting real
bodies is a bit harder. We consider first the fictitious bodies called ‘quasi
particles’, These arise from the fact that when a real particle moves through the
system, it pushes or pulls on its neighbours and thus becomes surrounded by
a ‘cloud’ of agitated particles similar to the dust cloud kicked up by a galloping
horsein a western. The real particle plus its cloud is the quasi particle (Fig. 0.4).

'fl.\\ "’. -\
@ i @
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real pe vticle
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Fig. 0.4 Quasi Particle Concept

Just as the dust cloud hides the horse, the particle cloud ‘shields’ or ‘screens’
the real particles so that quasi particles interact only weakly with one another.
The presence of the cloud also makes the properties of the quasi particle
different from that of the real particle—it may have an ‘ effective mass’ different
from the real mass, and a *Jifetime’. These properties of guasi particles are
directly observable experimentally.

It should be remarked that the quasi particle is in an excited energy level of
the many-body system. Hence it is referred to as an *elementary excitation’ of
the system. (See appendix &, §s¢.2.) We now consider some examples of
quasi particles, '
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1 Quasi ion in a classical liguid

Imagine that we have an electrolyte solution composed of an equal number
of positive and negative ions moving about and colliding with each other as
illustrated in Fig, 0.5. Let us focus our attention on a typical (+) ion in the

+ o '*",fo—‘_“"s‘ - Anot_her
- £oo4 - i quasi
- + 7 A particle
0 N +  t pattaalh s
ne ! )
L™ i \ -
quasi T, (- * _} + + .
particle Vo=
\.,‘___f' - +

Fig. 0.5 Quasi Particles in a Liguid of Positive and Negative Ions

system, As this ion moves, on account of the strong Coulomb interaction, it
will attract (—) ions to it. Some of these (—) ions will stick to the {+) for a
while, then fall off due to collisions, then be replaced by other (—) ions, etc.
Thus, on the average, because of the interaction, this typical (+) ion (and
therefore every {+) ion) will be surrounded by a *coat’ or “‘cloud’ of (—) ions
as shown in Fig. 0.5 inside the dotted lines. And of course each (—) jon will
similarly have a coat of (+) ions. This coat of opposite charge will shield the
ion’s own charge so that its interaction with other similarly shielded ions will
be much weaker than in the unshielded case. Thus the ions wearing their
coats will act approximately independently of each other and constitute the
quasi particles of this particular system. Many different types of systems of
interacting particles may be described in this manner, and in general we have

. ‘coat’ or ‘cloud”’ . . .
real particle + of other particles ~ quasi particle. 0.1

Sometimes this same equation is stated in a more powerful terminology
coming from quantum field theory:
: “‘dressed’ or ‘clothed’
or ‘physical’ or (0.2)

‘renormalized’ particle,

For example, in quantum electrodynamics a *bare’ electron interacting with
a field of photons acquires a cloud of virtual photons around it, converting
it into the ‘dressed’ electron. In a similar manner, the interaction between
real particles is called the ‘bare’ interaction, while the weak interaction
between quasi particles is referred to as the ‘effective’ or ‘dressed’ or ‘re-
normalized’ interaction,

‘clothing’

‘b [
are’ particle - orcloud’
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It should be noted that each bare particle is simultaneously the ‘core’ of a
quasi particle and a transient ‘member’ of the cloud of several other quasi
particles. Therefore, if we try to visualize the whole system here as com-
posed of quasi particles, we have to be careful, since each particle will have
been counted more than once. For this reason, the quasi particle concept is
valid only if one talks about a few quasi particles at a time, i.e., few in com-
parison with the total number of particles. In order to avoid this problem and
concentrate attention on just a single quasi particle at a time, it is convenient
to define quasi particles in terms of an experiment in which one adds an exira
particle to the system, and observes the behaviour of this extra particle as it
moves through the system. This is shown in Fig. 0.6 for a (4) ion.

(a) ® - (c)
Fig. 0.6 Moving Quasi Ion, (a) Extra (+) Ion Shot into Liguid, (b) (+) Ion

Acquires Cloud of (=) Ions, Turning it into Quasi Ion. (¢) Quasi Ion Moves
Through System

With this intuitive picture in mind, it is possible to guess at some of the
properties of quasi particles. First, because there is in general still a small
interaction left between quasi particles, a quasi particle of momentum p will
only keep this momentum for an average time t,. This can be understood from
Figs. 0.6 and 0.5. If the quasi ion in Fig. 0.6 (b) has momentum p, it will
propagate undisturbed an average time 7, before undergoing a collision with
another quasi ion in the system (that is, a quasi ion which belongs to the system,
like those shown in Fig. 0.5, not one which we shoot into the system) which
scatters it out of momentum state p. Hence

quasi particles have a lifetime, 7. 0.3)

The lifetime must be reasonably long for us to say that the quasi particle
approximation is a good one, It can also be seen that because of the average
coat of particles on its back, the quasi particle may have an ‘effective’ or
‘renormalized’ mass which is different from that of the bare particle. (The
effective mass concept is not always applicable however.) This implies that
free quasi particles (i.e., not in an externally applied field) have a new energy
law
. , pZ . p2
¢ =5 instead of ¢ = o 0.4)
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where m* is the effective mass. The difference

€quasl  — €bare = €genf 0.5)
particle particle
is called the * self~energy’ of the quasi particle. This comes from the interpreta-
tion that the bare particle interacts with the many-body system, creating the
cloud, and the cloud in turn reacts back on the particle, disturbing its motion.
Thus the particle is, in a sense, interacting with itself via the many-body
system, and changing its own energy. '

2 Quantum system: quasi electron in electron gas

The *electron gas’ is a simple model often used to describe many-body
effects in metals. It consists of a box containing a large number of electrons
interacting by means of the Coulomb force, In addition, there is a uniform,
fixed, positive charge ‘ background’ put into the box in order to keep the whole
gystem elecirically neutral. In the ground state, the electrons are spread out
uniformly in the box, as shown schematically in Fig. 0.7,

Fig. 0.7 ‘Eleciron Gas': Inieracn'ng Electrons Spread Out Uniformly in
Box, plus Uniform, Fixed, Positive Charge Background

Suppose now that we have a single, well-localized electron which we shoot
into the electrom gas (Fig. 0.8). Because of the repulsive Coulomb interaction
between electrons, this extra electron repels other electrons away from it, so

Fig. 0.8 Extra Electron Shot into Electron Gas
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we get an ‘empty space’ near the extra electron, and repelled electrons further
away (Fig. 0.9). The empty space has positive charge, since the positive charge
background is exposed in this region. This empty region may be viewed in a
more detailed or ‘microscopic’ way as composed of ‘holes’ in the electron gas.
That is, the extra electron has ‘lifted out’ electrons from the uniform charge
distribution in its vicinity, thus creating *holes’ in this charge distribution, and
has ‘put down’ these lifted-out electrons further away. This is shown in Fig.
0.10. Because of the exposed positive background, these holes have positive
charge.

Fig, 0.9 Extra Electron Pushes Other Electrons Away, Creating *Empty’
Region in its Immediate Vicinity

Fig. 0.10 ‘Microscopic® View of Fig. 0.9 Showing Electrons Lifted out from
Vicinity of the Extra Electron, thus Creating * Holes’

The above definition of hole in the sense of * empty place’ is the one commonly
used in solid state physics. However, later on we shall re-define things so that
the hole becomes an ‘anti-particle’ analogous to those of elementary particle
physics (see §4.2).

The holes and lifted out electrons are constantly being destroyed by inter-
action with the extra electron and with the other electrons in the system, and
new holes and lifted out electrons take their place. The sum of these micro-
scopic processes, which go on all the time, is Fig. 0.9. Thus Fig. 0.9 may be
visualized as an extra electron surrounded by a ‘cloud’ of constantly changing
holes and lifted out electrons. This combination is called the guasi electron.

0.2] THE MANY-BODY PROBLEM FOR EVERYBODY 9

The quasi electron moves or *propagates’ through the system as shown in
Fig. 0.11.

We now notice that the positive hole cloud immediately around the extra
electron partially shields the electron’s own negative charge. Hence, if we
have two quasi electrons as shown in Fig. 0.12, and these are far enough

Fig. 0.11 Quasi Electron Propagd.res Through System

Fig. 0.12 Two Quasi FElectrons Interact only Weakly Because of Shielding

apart so that their clouds do not overlap very much, then we see that because
of the shielding the two quasi electrons will interact only weakly, That is,
quasi electrons act nearly independently of one another. This is why metals
generally behave as if their electrons were independent: it is not real electrons
but rather quasi electrons we are looking at. '

3 Single electron in a metal

Actually, the simplest quantum exampie of the quasi particle idea occurs
not in a true many-body system, but rather in a system containing one particle
moving in an external potential, i.e., a conduction electron in a metal, In a
perfect metal the positive ions form a regular periodic lattice (we ignore lattice
vibrations for the moment) so that the electron moves in a periodic force field
due to the attractive Coulomb interaction between the ions and the electron.
(see Fig. 0.13a). Inanimperfect metal, the periodicity is spoiled by the presence
of a more or less random distribution of some impurity ions in the lattice, or
the presence of some displaced ions (Fig. 0.13b).
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Since the lattice here is assumed fixed, there is no ‘moving cloud” of lattice
ions following the electron. Nevertheless, it turns out that even these stationary
lattice ions are capable of ‘clothing’ the electron, and we find that for a perfect
lattice, there is an effective mass, m*, and an infinite lifetime, Addition of
imperfections causes the lifetime to become finite.

4 Quasi nucleon

Despite powerful short-range forces between nucleons in a nucleus, they
behave in many respects as if they were independent of each other, as is
indicated by the success of the nuclear shell model. The nearly independent
particles hereare not the nucleons themselves, but the nucleons each surrounded
by a cloud of other nucleons, i.e., the quasi nucleons.

5 Bogoliubov quasi particles (‘ bogolons®)

These are the elementary excitations in a superconductor. We include them
here since they are called quasi particles, but actually their structure is quite
different from the ‘ particle plus cloud’ picture described above. They consist
of a linear combination of an electron in state (+%, 4} and a ‘hole’ in (~ %, }).

0.3 Collective excitations

As we have seen, the quasi particle consists of the original real, individual
particle, plus a cloud of disturbed neighbours. It behaves very much like an
individual particle, except that it has an effective mass and a lifetime, But there
also exist other kinds of fictitious particles in many-body systems, ie.,
‘collective excitations’. These do not centre around individual particles, but
instead involve collective, wavelike motion of olf the particles in the system
simultaneously. Here are some examples: '

1 Plasmons

If a thin metal foil is bombarded with high energy electrons, it is possible
to set up sinusoidal oscillations in the density of the electron gas in the foil.
This is known as a ‘ plasma wave’, and it has a frequency w,, and a wavelength
A, (see Fig. 0.14a). The plasma wave may be visualized as built up of ‘holes’

0.3] THE MANY-BODY PROBLEM FOR EVERYBODY 1

in the low-density regions and extra electrons in the high-density regions as
shown in Fig. 0.14(b). Just as light waves are quantized into units having
energy E=Flw called photons, plasma waves are quantized into units with
energy E,=hw, called plasmons.

Density
}

(@

Fig. 0.14 (a) Plasma Wave in Electron Gas, (b) Particle-hole Picture of
. Plasma Wave ‘ ‘

2 Phonons

Sound waves are sinusoidal oscillations in the crystal lattice of a solid. They
are quantized into collective excitations called ‘phonons’. (See appendix &7.)

3 Magnons

In ferromagnets there are regular fluctuations in the density of spin angular
momentum known as *spin waves’. The collective excitation here is the spin
wave quantum known as the ‘magnon’.

4 Nuclear quanta

In nuclei, one finds various vibrational and rotational motions; the associ-
ated quanta are the collective excitations in this case.

In the next chapter, we will describe in a very qualitative way how to find
the properties of quasi particles and collective excitations by means of
‘propagators’ and ‘Feynman diagrams’,

Further reading

Appendix of
Patterson (1964).
Pines (1963), chap. 1.



Chapter 1

Feynman Diagrams, or how to Solve the
Many-Body Problem by means of Pictures

1.1 Propagators—the heroes of the many-body problem

We have seen that many-body systems consisting of strongly interacting real
particles can often be described as if they were composed of weakly interacting
fictitious particles: quasi particles and collective excitations. The question
now is, how can we calculate the properties of these fictitious particles—for
example, the effective mass and lifetime of quasi particles? There are various
ways of doing this (see appendix ) but the hero roles in the treatment of the
many-body problem are played by quantum field theoretical quantities known
as Green's functions or propagators, These are essentially a generalization of
the ordinary, familiar undergraduate Green’s function. They come in all sizes
and shapes—one particle, two particle, no particle, advanced, retarded, causal,
zero temperature, finite temperature—an assortment to suit every situation
and taste.

There are three reasons for the immense popularity propagators are enjoying
these days. First of all, they yield in a direct way the most important physical
properties of the system. Secondly, they have a simple physical interpretation,
Thirdly, they can be calculated in a way which is highly systematic and ‘auto-
matic’ and which appeals to one’s physical intuition,

The idea behind the propagator method is this: the detailed description of a
many-body system requires in the classical case the position of each particle
as a function of time, ry(¢), r,(t), ..., ry(f), or in the quantum case, the time-
dependent wave function of the whoie system, P(r,.r;,....xy, f). A glance at
Fig. 0.2B shows that this is an extremely complicated business. Fortunately,
it turns out that in order to find the important physical properties of a system
it is not necessary to know the detailed behaviour of each particle in the

system, but rather just the average behaviour of one or two typical particles.
The quantities which describe this average behaviour are the one-particle
propagator and two-particle propagator respectively, and physical properties
may be calculated directly from them.

Consider the one-particle propagator first. It is defined as follows: We put
a particle into the interacting system at point r, at time 7, and let it move through
the system colliding with the other particles for a while (i.e., let it ‘propagate’

12
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through the system). Then the one-particle propagator is the probability (or
in quantum systems, the probability amplitude—see §3.1) that the particle will
be observed at the point r, at time ,. (Note that instead of putting the particle
in at a definite point, it is sometimes more convenient to put it in with definite
momentum, say py, and observe it later with momentum p,.) The single-particle
propagator yields directly the energies and lifetimes of quasi particles. It also
gives the momentum distribution, spin and particle density and can be used to
calculate the ground state energy.

Similarly, the two-particle propagator is the probability amplitude for
observing one particle at r,,¢, and another at r,,#, if one was put into the
system at ry, 2, and another at rs, #5 (see Fig. 0.2B). This also has a wide variety
of talents, giving directly the energies and lifetimes of collective excitations,
as well as the magnetic susceptibility, electrical conductivity, and a host of
other non-equilibrium properties.

There is also another useful quantity, the ‘no-particle propagator’ or so-
called ‘ vacuum amplitude’ defined thus: We put no particle into the system at
time ¢y, let the particles in the system interact with each other from ¢, to 1., then
ask for the probability amplitude that no particles emerge from the system at
time ¢,. This may be used to calculate the ground state energy and the grand
partition function, from which all equilibrium properties of the system may be
determined.

1.2 ‘Calculating propagators by Feynman diagrams: the drunken man propagator

There are two different methods available for calculating propagators. One
is to solve the chain of differential equations they satisfy—this method is
discussed briefly in appendix M. The other is to expand the propagator in an
infinite series and evaluate the series approximately. This can be carried out in
a general, systematic, and picturesque way with the aid of Feynman diagrams.

Just to get an idea of what these diagrams are, consider the following simple
example (see Fig. 1.1). A man who has had too much to drink, leaves a party
at point 1 and on the way to his home at point 2, he can stop off at one or more
bars—Alice’s Bar (4), Bardot Bar (B), Club Six Bar {C), ...,ete. He can wind
up either at his own home 2, or at any one of his friends’ apartments, 3, 4, etc.
We ask for the probability, P(2,1), that he gets home. This probability, which
18 just the propagator here (with time omitted for simplicity), is the sum of the
probabilities for all the different ways he can propagate from 1 to 2 interacting
with the various bars.

The first way he can propagate is “freely’ from 1 to 2, i.e., without stopping
ata bar. Call the probability for this free propagation Py(2, 1).

The second way he can propagate is to go freely from 1 to bar 4 (the prob-
ability for this is Py(4, 1)), then stop off at bar 4 for a drink (call the probability
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for this P(4)), then go freely from A to 2 (probability =Py(2, 4)). Assume for
simplicity that the three processes here are independent. Then the total
probability for this second way is the product of the probabilities for each
process taken separately, i.e., Po(d4,1) X P(A) X Po(2,A). (This is like the case
in coin-tossing: since each toss is independent, the probability of first tossing
a head, then a tail, equals the probability of tossing a head times the probability
of tossing a tail.)

FRIEND'S
APARTMENT

R.D. MATTUK

(Reproduced with the kind

Fig. 1.1 Propagation af Drunken Man
’ permission of The Encyclopedia of Physies)

The third way he can propagate is from 1 to B to 2, with probability
P(B,1)P(B)Py(2,B). Or he could go from 1 to C to 2, etc., ot from 1 to A to
Bto 2, or from 1 to 4, come out of 4, go back into A4, then go to 2, and so on.
The total probability, P(2,1) is then given by the sum of the probabilities for
each way, i.e., the infinite series:

P(2,1) = Py(2,1)+Po(A, 1) P(A) Po(2, A)+Po(B, 1) P(B) Po(2, B) + - -
+Po(A, 1) P(A) Po(B, A) P(B) Po(2, B)++ . (1.1)

This is an example of a * perturbation seties’, since each interaction with a bar
‘perturbs’ the free propagation of the drunken man.

Now, such a series is a complicated thing to look at. To make it easier to
read, we follow the journal *Classic Comics’ where difficult literary classics
are translated into picture form. Letus make a‘picture dictionary’ to associate

F |
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diagrams with the various probabilities as in Table 1.1. Using this dictionary,
series (1.1) can be drawn thus:

f-f-0-0m

Since, by dictionary Table 1.1, each diagram element stands for a factor,
series (1.2) is completely equivalent to (1.1). Howeverit has the great advantage
that it also reveals the physical meaning of the series, giving us a *map’ which
helps us to keep track of all the sequences of interactions with bars which the
drunken man can have in going from 1 to 2.

2

o

+or () 40 (12)

O
O

+

Oan®

1 1

1

Table 1.1 Diagram dictionary for drunken man propagator

Word Picture Meaning
2 - A
P, 1) N probability of propagation
1 from1to2
Po(s,r) ]l’ probability of free propagation
r fromrtos
P(X) . @ probability of stopPing off
at bar X for a drink

The series may be evaluated approximately by selecting the most important
types of terms in it and summing them to infinity. This is called partial
summation. For example, suppose the man is in love with Alice, so that P(4)
is large, and all the other P(X)'s are small. Then Alice’s bar diagrams will
dominate, and the series (1.2) may be approximated by a sum over just repeated
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interactions with Alice’s Bar:
2 2
H ~ + + + + (A) 4+~ (1.3)
1 1 e

Using the above dictionary, this can be translated into functions:
P(2,1) = Po(2,1}+Po(A, 1) P(A) Po(2, A) +
+Po(d, 1) P(A) Pof A, A) PAY P2, A)+++-. (14)

Assume for simplicity that all Py(s,#) are equal to the same number, ¢, i.e.,
Py(2,1)=Py(2,A) =Py(A4,1)=Po(4, A)=c. Then series (1.4) becomes

P(2,1) = e+ 2 P(A)+ P PHA)++*

| = ¢{1+cP(A)+ [cP(A)P+[cP(A)P+- ). (1.5)
; The series in brackets is geometric and can be summed exactly to yield
1/(1—cP(4)), so that
1 1
= = 1.
PG cx(l—cP(A)) =P .6

which is the solution for the propagator in this case.
Note that since each diagram element stands for a factor, we could have done

calculation (1.5), (1.6} completely diagrammatically:

bbb (4
3k G PR &)

K

f . The partial summation method is extremely useful in dealing W.itl:.l the
: strong interactions between particles in the many-body problem, and it is the
basic method which will be used throughout this book.
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1.3 Propagator for single electron moving through a metal

The example here is just like the previous one, except that instead of a
propagating drunken man interacting with various bars, we have a propagating
electron interacting with various ions in a metal. A metal consists of a set of
positively charged ions arranged so they form a regular lattice, asin Fig. 0.13A
or a lattice with some irregularities, as in Fig. 0.13B. An electron interacts
with these ions by means of the Coulomb force. The single particle propagator
here is the sum of the quantum mechanical probability amplitudes (see §3.1) for
all the possible ways the electron can propagate from point r; in the crystal at
time f;, to point r, at time ¢#,, interacting with the various ions on the way.
These are: (1) freely, without interaction; (2) freely from ry, ¢, (=*1" for short)
to the ion at r, at time ¢, interaction with this ion, then free propagation from
the ion to point 2; (3) from 1 to ion B, interaction at B, then from B to 2, etc.
Or we could have the routes 1-4-4-2, 1-4-B-2, etc. We can now use the
dictionary in Table 1.1 to translate this into diagrams, provided the following
changes are made: change ‘ probability’ to ¢ probability amplitude’, and change
the meaning of the circle with an X to ‘ probability amplitude for an interaction
with the ion at X”. When this is done, the series for the propagator can be
translated immediately into exactly the same diagrams as in the drunken man
case! That is, (1.2) is also the propagator for an electron in a metal, provided
that we just use a quantum dictionary to translate the lines and circles into
functions. The series can be partiaily summed, and from the resulting propa-
gator we obtain immediately the energy of the electron moving in the field of
the ions.

1.4 Single-particle propagator for system of many interacting particles

We will now indicate in a qualitative way how the single-particle propagator
may be calculated in a system of many interacting particles. The argument is
generai, but we may think in terms of the electron gas as illustration. The
propagator will be the sum of the probability amplitudes for all the different
ways the particle can travel through the system from ry, ¢, to #;,¢,. First we
have free propagation without interaction. Another thing which can happen
is shown in the ‘movie’, Fig. 1.2, which depicts a ‘second-order’ propagation
process (i.e., a process with two interactions). (It should be mentioned here
that unlike the drunken man case, the processes involved in Fig. 1.2 are not
real physical processes, but rather ‘virtual’ or ‘quasi physical’, since they do
not conserve energy, and they may violate the Pauli exclusion principle. The
reason for this is that, as we shall see later on, the sequence in Fig. 1.2 (or the
corresponding diagram (1.9)) is simply a convenient and picturesque way of
describing a certain second-order term which appears in the perturbation
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expansion of the propagator. Hence Fig. 1.2 and diagram (1.9) are in rea‘lity
mathematical expressions so we have to be careful not to push their physical

interpretation too far (see §4.6).)

(d) & _
Fig. 1.2 ‘Movie’ of Second-order Propagation Process in Many-body
‘ System : :

(a) At time 1,, extra particle enters system. o

(b) At time ¢, extra particle interacts {(wavy line) with a particle in the
system, lifting it out of its place, thus creating 2 ‘hole’ in the system.

{¢) The extra particle, plus the ‘hole’ and the ‘lifted-out’ particle
(* particle-hole pair”) travel through the system. )

(d) At time ¢/, the extra particle interacts with the ‘lifted-out’ partlcl.e,
knocking it back into the hole, thus destroying the particle-hole pair.

(e) At time f;, the extra particle moves out of the system.

To represent this sequence of events diagrammatically, let us imagine that
time increases in the upward-going direction and we use the following diagram
elements:

Fa. 12 L TLS '
2 * 2 :{ ry I>~»-w~< ra,t {1.8)
Pty . . h

43| 0] tor for ropagator for : probability amplitude for
E gun%:tapmpmtins gnle propagating & particle Bt r\ interacting
= freely from ry,ty freely from ryfy with a particle at r
p=  torufz to rz,tz at yme f ]

(Note that the hole is drawn as a particle moving backward in time. The reason
for this is in §4.2.) Then the probability amplitude for the above sequence of
events can be represented by the diagram
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t2
A

b ¥ Particle-hole ‘pair bubble’: O
1 (1.9)
t .

¥

The piece of diagram:

{::z} ‘ (1.10)

is called a ‘self-energy part® because it shows the particle interacting with itself
via the particle-hole pair it created in the many-body medium. Diagram (1.9)
may be evaluated by writing a free propagator factor for each directed line,
and an amplitude factor for each wiggly line (see Chapter 4, Table 4.3),
analogous to the drunken man case.

Another sequence of events which can occur involves only one interaction
(i.e., a ‘first-order’ process). It is a quick-change act in which the incoming
electron at point » interacts with another electron at point r* and changes place
with it. This is analogous to billiard ball 1 striking billiard ball 2 and trans-
ferring all its momentum to 2. The first-order process and its analogy are
shown in Fig. 1.3. The sequence may be drawn diagrammatically

O—v @ 00 @ @—v

@ ' ) ‘ (©)
Fig. 1.3 Movie of First-order Process (Lower Drawing) and its Analogy
(Upper Drawing)

{a) Exira particle enters at time #,. :

(b) At time s, the particle is at point . It interacts with a particle at r* an
changes place with it.

(6) Extra particle leaves at time #;.
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asin (1.11):
)
t (1.11)
4

‘Open oyster’ diagram
(closed oyster is in (1.19))

The diagramsin (1.8)-(1.11) are called Feynman diagrams after their inventor,
Richard P. Feynman who employed them in his Nobel prize-winning work on
quantum electrodynamics. They are used extensively in elementary particle
physics.

The total single particle propagator is the sum of the amplitudes for all
possible ways the particle can propagate through the system. This will include
the above processes, repetitions of them, plus an infinite number of others.
Thus we find

(Note: the interpretation of the ‘bubble’ diagram, just after the open oyster,
will be discussed in chapter 4.)
We can see the direct connection between the one-particle propagator and

the quasi particle by looking at all the diagrams at a particular time 7, (dashed
line):

e @ """"""" Eﬁ“) ''''' "
= + +.-- +‘_,+ +...'
(a) {2) () ()

At t,, we see that various situations may exist: there may be just the bare
particle (a), or there may exist two particles plus one hole created by the second-
order sequence (c), or three particles plus two holes in (d), etc. That is, the
diagrams show all the configurations of particles and holes which may be
kicked up by the bare particle as it churns through the many-body system. If
we now compare with the picture of the quasi particle in Fig. 0.10, we see that
the diagrams reveal the content of the ever-changing cloud of particles and holes
surrounding the bare particle and converting it into a guasi particle.
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Just as in the drunken man case, the propagator here may be caleulated
approximately by doing a partial sum. For example, we can sum over all
diagrams containing repeated open oyster parts since they constitute a geo-
metric series (cf. (1.7)):

A/l e

For the electron gas, this is the ‘Hartree-Fock’ approximation. We can also
include ‘ring’ dizgrams in the sum, i.e., diagrams in which the self-energy
parts are composed of rings of particle-hole pair bubbles (these are the most
important in a high-density electron gas):

f<]s FJ}}:@ , ‘:O:O ,

This sum can be carried out and yields the so-called ‘random phase approxi-
mation’ or ‘RPA’, which is extremely useful in analysing the properties of
metals,

Note that the essential thing involved in the above partial sums is the struc-
ture or tapology of the diagrams, i.e., how the various lines are connected to
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each other. Thus we could sum (1.14) because each diagram consisted of
single lines connecting the same repeated part. This diagram topology is the
key to the quantum field theoretical method in the many-body problem.

1.5 The two-particle propagator and the particle-hole propagator

The two-particle propagator is the sum over the probability amplitudes for
all the ways two particles can enter the system, interact with each other and
with the particles in the system, then emerge again. The diagram series for it
is (note that the dots on the diagram for the two-particle propagator show the
points at which directed lines emerge):

(1.16)
A partial sum over all *ladder’ diagrams here:

MHHMW o

o k

is called ‘ladder’ approximation, and is very useful in describing nuclear
matter, and low-density systems.
The ‘particle-hole’ propagator, given by

SNIDAT

may be used to find the energy and lifetime of collective excitations, e.g.
plasmons.
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1.6 The no-particle propagator (‘ vacuum amplitude”)

The ground state energy of a many-body system may be obtained directly
from the no-particle propagator, or ‘vacuum amplitude’. This is the sum of
amplitudes for all the ways the system can begin at time #; with no extra or
lifted-out particles, or holes in it (this is the undisturbed or ‘ Fermi vacuum’
state), have its particles interact with each other, and wind up at ¢, with no
extra or lifted-out particles, or holes. The simplest process is where nothing
at all happens—the system just sits there. A first-order process occurs in
which two particles change places with each other as shown in the following

diagram
@ (1.19)

‘Oyster’ diagram
A more complicated process is shown in Fig. 1.4. The vacuum amplitude
may thus be represented by the following diagram series:

Do
(@ ® ©
0 o [y o

(@) (e

where ‘1’ is for the nothing-at-all process and (d) is the picture for Fig. 1.4.
(The *double bubble’ diagram, (c), is discussed in chapter 5.)

The vacuum amplitude series gives us a vivid picture of the ground state of
the many-body system as a sort of * virtual witches’ brew’, constantly seething,
with particles and holes boiling up, bubbling, and colliding, as in Fig. 1.5.

In conclusion, we see that Feynman diagrams have many appealing features,
besides their utility as a calculational tool. One thing which was already pointed
out in §1.2 is the fact that they show directly the physical meaning of the
perturbation term they represent. Another thing is that they reveal at a glance
the structure of very complicated approximations by showing which sets of
diagrams have been summed over. In this way, they have introduced a new
language into physics, and one often sees phrases like ‘ladder approximation’
or ‘ring approximation’ even in articles in which no diagrams appear. And
finally, one cannot be immune to the Klee-like charm of the diagrams. Includ-
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(e
Fig. 1.4 Virtual Movie of Second-order Vacuum Amplitude Process

(@) Vacuum.

(b) At time #, interaction between two particles in system causes two
particles to be lifted out, forming two holes.

(¢) The two particle-hole pairs propagate freely through the system,

(d) Both pairs annihilated at time ¢/,

{e) Vacuum.

DOUBLE BUBBLE,
PAIR BUBBLE,
PARTICLES AND HOLES,
IN SYSTEM BuBBLES

MATruUcik
Fig. 1.5 Modern View of a Many-body System in its Ground State

ing in their ranks, in addition to the above, such characters as the ‘necklace’,
the ‘potato’ and the ‘tadpole’, plus infinite numbers yet unnamed, they
constitute what might indeed be called ‘perturbation theory in comic-book
form.’

Chapter 2

Classical CQuasi Particles and the Pinball
Propagator

2.1 Physical picture of quasi particle

We saw in §0.2 that the quasi particle is one type of elementary excitation in
a many-body system, and that physically it consists of a particle surrounded
by a cloud of other particles. The concept wasillustrated by examples ranging
from the quasi electron to the quasi horse. We also saw how quasi particles
may be described by means of propagators, which are calculated with the aid
of Feyman diagrams. Here we start with a brief review of the quasi particle
idea, then go on to describe the form of the propagator for a classical quasi
particle. The partial sum method of calculating the classical propagator is
discussed in detail with the aid of a pinball machine example.

For concreteness, let us think in terms of the classical quasi ion in Fig. 0.6
which consists of a bare ion plus a coat of oppositely charged ions surrounding
it. This picture led us to the general definition

‘coat’ or ‘cloud’

real parl:icle:+of.°ther particles — quasi particle 2.1)
or
‘clothing’ ‘dressed’ or ‘clothed’
‘bare’ particle+ , = or ‘renormalized’ {2.2)
or‘cloud particle

It may be remarked that if we perform a *Gedanken’ calculation and
imagine that the transformation in appendix (7.9} were carried out, we see
that the quasi particle co-ordinate R, will involve the real particle co-ordinate
r;, plus the co-ordinates r,(j#i) of all the other particles in the system. The
r,(j#1{) then evidently describe the shifting cloud, so it is therefore proper to
call the cloud a part of the quasi particle.

‘We saw also that because of the small interactions between quasi particles,

quasi particles have a lifetime, 7, 2.3

and because of their coat of other particles, quasi particles have a new energy

2

=2
=5
25
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law where m* is the effective mass. Finally, we defined the self-energy, €., by

€quast " €bare = Egerr- (2.5)
particle particle

2.2 The classical quasi particle propagator

Quasi particles in a system may be tracked down by means of the single
particle Green’s function or ‘propagator’. Let us see what this is in the
classical case. Imagine we have a many-body system, and we consider the
motion of one particle in it under the influence of a constant external force F
applied to it as shown in Fig. 2.1. Suppose the particle begins at r; at time ¢,.

o ®
« ¢
!} e
'? .
~, 'm °

Fig. 2,1 Many-body System

If there are no collisions with other particles, the movement or ‘propagation’
of the particle to the point r, at time ¢, is described by

n-n = 33} ea-nr .6

But in the interacting case, collisions take place, and the particle will follow
a highly irregular path not described by (2.6). The best one can do in this
situation is to talk about the probability of the particle going from one point
to another, This leads us to define the classical propagator:

P(rs, 15,1y, 1;) = probability density (=probability per unit volume)
that if a particle at rest is put into the system at point
r, at time #;, then it will be found at r, at later
time £,. 2.n
It will be convenient, when we later take the Fourier transform, to have P
defined also for f,< ¢;:

P(l'z, 2,11, tl) =0, for <. (2.8)

In Fig. 2.2 is a graph showing a qualitative picture of this propagator in the
interacting and non-interacting cases. Probability density is plotted on the
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vertical axis, and f, and an arbitrary component of r; on the horizontal axes,
In the absence of interactions, P will be a surface which is zero everywhere
except on the line r, —ry =3(F/m)(t,— ;)% where it equals o, i.e., the Dirac
8-function: :

Pru it = [@-m~3(5) (rz—rm]ﬂ 9

This propagator in the absence of interactions is called the free propagator.

P(ry, tayri ty)

inter- non-interacting
acting (free)
(r, 21) }A ] r;

12— T ='2!'(£)(fz— 1)?
F

<I'z I = % (—.) (tz - tl)z

m

Fig. 2.2 The Classical Propagaior (Schematic—Only One Component
of vy Shown)

If interactions between particles are now allowed to occur, this surface will
spread out, as shown qualitatively. If we examine {r;—r,>, the position of the
maximum value of P in'the interacting case, we see that for some types of
interaction we might find that

{ry—1p = %(—5;) (t2—1)* for P = maximum. (2.10)
If this is true, then <{r,—r;> behaves as the ¢o-ordinate of a quasi particle of
effective mass m*. Look now at the maximusn height of P as a function of #,.
Because of the ‘spreading out’ of the particle position, Py,, will first fall
infinitely rapidly from its value of « at #,=1¢,, then more slowly, If this stower
decay is exponential: _

Progs(T2, 1, T, 19) o< 50T, (2.11)
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then r may be identified as the quasi particle lifetime ; it clearly must be fairly
large if the quasi particle picture is to be useful, Thus, if we calculate P and
find that it shows the above behaviour, then the system is describable in

terms of quasi particles and their lifetime and effective mass may be
determined,

2.3 Calculation of the propagator by means of diagrams

The actual calculation of the propagator P is quite complicated, but it is
easy to illustrate all the principles involved with the aid of a simple analogue
example in which the many-body system is replaced by a set of fixed scattering
centres. (The system considered here is essentially the same as the drunken
man case in chapier 1, but it will be treafed in much more detail.)

The example involves the particle accelerator in Fig. 2.3, A pinball is
injected at the point ry, at time #, and propagates through the system, being
scattered at the various centres, We ask for the probability P(r;,15,%1,%1)
that the particle reaches the point r; at time #,.

The scattering mechanism is assumed to be such that (1) if the pinball
strikes the shaded circle at animal 4, then there is probability P(4) that it is
scattered and 1—P(A) that it will go straight through without scattering,
(2) the probability distribution of pinball paths and velocities after scattering

at 4 must be independent of the pinball path and velocity before scattering—
that is, the pinball loses its ‘memory’ of how it got to 4.

{There are many ways in which the above properties can be approximately

realized. For example, the shaded circle could be a round peg which is pushed
up so that it protrudes above the playing board surface a fraction P{A) of the
time, and is pulied in so that it is flush with the surface (hence cannot scatter
the pinball) the rest of the time. Or we could have an immovable peg (i.e.,
always protruding) within the shaded circle, having a diameter such that the
ratio of the peg diameter to that of the circle=F(4). The loss ef memory
could be achieved by attaching a ‘shufiling’ device to each peg~—like for
example rapidly rotating spokes. The choice of methed and the ‘Rube
Goldberg’ details are, however, left as an exercise to the reader. They are of
no importance for our discussion!)

For the sake of simplicity, let us leave time out of the argument to begin
with, and consider just P(r,,ry); this is the probability that if the particle
begins at r, it will finish at r, regardless of the time. From the definition of
probability, P(r;,¥;) is the sum of the probabilities for all the different ways
the particle can go through the machine which begin at r; and wind up at r».
For example, it could go ‘directly’ from r; to ry (i.e., without being scattered
on the way) or it could go from r, to the giraffe, be scattered off the giraffe

and fall to r,. Or it could scatter from the giraffe to the monkey to r,. Or it
could scatter twice on the giraffe before falling to r,. And so on.
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Typical
scattering
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L Collimator

— Point O

Test
particle

Particle
accelerator

Fig. 2.3 Classical Analogue Machine to Illustrate the Single-particle Propagator
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‘We first calculate the probability that the pinball will follow any particular
path through the system. Let Py(r,r;)=probability that if the pinball leaves
r; then it travels to r; without being scattered by an animal en route (*free
propagator’). The simplest path the pinball can follow is from ry to r, without
scattering; this has probability Py(r,,ry). Another path is from r; to the
giraffe at rg (probability=P,(rs,r;)), scattering at the giraffe (prob-
ability=P(G)), then from rg to r, (probability=/Py(rs,rg)). Because the
pinball loses its memory after the scattering at rg, these probabilities are
independent of each other, and the joint probability for the whole path is
just the product of the probabilities for each part of the path:

P{(r; — rg), (scattered atre), (g ~> 1)} = Py(rg, 1) P(G) Pylry,re).  (2.12)

(Note that a process in which the pinball goes from r, to rg, is not scattered
at rg, and continues to r,, is not included in (2.12), but in the free propagator,
Py(rz,ry).) The probabilities for the other paths are calculated in a similar
fashion.

The total probability, P(r,,xy), is just the sum of the probabilities for the
various paths. Thus we find

P(r2,11) = Pylry, 1)+ Pots, £1) P(G) Po(rz, 16) + PolTar, £1) P(M) Py(rp, Tar) +
+Po(rg, 11) P(G) Pofrg, 16) P(G) Pl Tg) -+ (2.13)

where G=giraffe, M=monkey, etc. What we have here is evidently just a
perturbation expansion of the propagator, in which the P(4)’s play the same
sort of role that the matrix elements of the perturbation, V,, play in quantum
mechanical perturbation expansions.

In order to make series (2.13) easier to interpret, we draw a ‘picture
dictionary’ to associate diagrams with the various probabilities as shown in
Table 2.1.

Table 2.1 Diagram dictionary for the pinball

propagator
Word Picture
o
P (r.h l'g) . I
LY}
Pylryry) } r
i

P(4) @

Iz

r
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Then the series (2.13) may be drawn thus;

rz

43 | 23 Ta
g
- + + + oeee + + + e+ + T o
g | ’
Ts
Ty I I '

(2.14)

Equations (2.14) and (2.13) are of course completely equivalent to each other,
being in one-to-one correspondence by the dictionary Table 2.1, But the
picture has the advantage of revealing the physical meaning of (2.13), showing
directly the particle shooting out from ry, undergoing various sequences of
collisions and coming finally to r,. It presents in a vivid and systematic way
the total probability as the sum of the probabilities associated with all the
possible paths or “histories’ the particle can have as it goes through the
system. Note that it is possible to interpret the ry, x5, ¥g, ... on the diagrams
as being points in real space if we just re-draw the diagrams so the points lie
as in Fig. 2.3 thus:

Iy I r r I r
/: /.g.. + . e £ E L (215)
L I; Tz rz I o]

It is important to observe that in terms of diagrams, ‘the sum of the proba-
bilities for all the different ways the particle can go from ry to ry, interacting
with the various scatterers® may be translated into ‘the sum of all possible
different diagrams which can be built up out of labelled circles connected by
directed lines, beginning at ry and terminating at r,”. This is because there is
just one diagram corresponding to each physical path through the system.

How can this series be evaluated? If we assume that the Pg’s are large,
say ~% or so, and the various interaction P(A)’s are small, say ~ 3, then the
higher order diagrams (i.e., terms; note that by crder here we mean the total
number of interactions) will give successively smaller contributions, and just
as in ordinary perturbation theory, we can get an approximate solution by
simply summing the series up through the first- or second-order terms. Thus,
the zeroth-order approximation would be just the unperturbed case where the
particle propagates freely from ry to r,. When we add the possibility of a
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perturbing (scattering) interaction with the various animals just once each,
we get the first-order approximation

Allowing two interactions gives the second-order approximation and so on.
If, on the other hand, one or more of the interaction terms P(4) is large (i.e.,
strong scattering at A) this method is not practical, since the series converges
too slowly, and the summation must be carried out to extremely high ordérs
to give a good result,

However, there is another kind of approximation we can make in this
strong interaction case, an approximation that does not stop at second order,
but instead sums over diagrams to infinite order. Suppose, for example, that
only P (monkey) is large and all the other P(A)’s are small. Then the monkey
diagrams will dominate, and the series may be approximated by the sum over
just repeated monkeys, thus:

(2.16)

+ o 217

x
+
+
+

Translating each element of the diagrams into the appropriate probability, it
is easy to write down the corresponding series:
P(ry,1)) & Pylrs, T1)+ Po(tas, 11) P(M) Po(ta, Tae) +

+ Po(Xpr, 1) P(M) Po(tas, ¥ar) P(M) Polvy, Tpe) ++ 0+ (2.18)
And now we notice that this infinite series is easily summed, since it is just a
geometric progression:

P(xz,r1) = Polty, 1))+ Po(rar, 1) P(M) Po(ra ¥ar) X
% [L+P(M) Py (X, )+ P(M )2 Po(tas, Tag)? 4]
Po(ras, 1) P(M) Po(Xa,Tar)
1—=P(M) Po(rassTu)

Thus, we have obtained an approximate solution for the propagator P(rs,ry)
which is valid in the strong interaction case.

= Pofrz, 1)+ 2.19)
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This new approximation, involving the summation of a perturbation
series to infinite order over a selected class of repeated diagrams (i.e., terms)
is called * partial summation’ or *selective summation’. Itis drastically different
from the ordinary perturbation approximation. It goes beyond conven-
tional perturbation theory and can be used in cases where the interaction
term is so large that the ordinary low-order perturbation approximation
won’t work. It is this property which makes the new technique of great value
in tackling the strong interactions encountered in the many-body problem.
As will be seen shortly, this method of partial summation is the basic pro-
cedure underlying the calculation of the quantum mechanical propagator.

The above diagram technique may easily be extended to the time-dependent
propagator, P(ry,ry,fo—11). (We have written 2,—¢, since the force is time
independent so the propagators can depend only on time differences.) Let
Py(xpr;, ;- t;)=probability that if the particle leaves the point r; at time ¢,
then it arrives at r; at time ¢, without undergoing any interaction on the way
(this is the ‘free propagator®). Let P(A) be the interaction term, assumed
instantaneous for simplicity. Then, using the convention that time increases
in the positive y direction, the new diagram dictionary is given by Table 2.2
and the diagrammatic expansion becomes

l'z,tz
Ynly Ialy  Eaila Iy fz
¥g,le
- 4 + Ygle + Dty + o0 + -
Teslg
 STRSENND STY ST S 7% 51 Iy,
: It (2.20)

(Analogous to (2.15), these diagrams may be re-drawn (at least in the one-
dimensional case) in a co-ordinate system with ¢ as ordinate, and r as abscissa.)
Then, in writing down the corresponding series, it is necessary to remember
that ¢,, the time at which the scattering from 4 occurs, may be anywhere
between #, and #,, and there is some probability that it occurs at any of these
intermediate moments. Thus, the total probability is the sum of all these
contributions, and this implies that we must integrate over ail intermediate
times, #,. This leads to the series;

P(ry, i, ta~11) = Polrgyty, ta— 1)+
£
+f dtg Po(t, 11, to—11) P(G) PofXa, ¥g, L — t6) +

+}drM---+ff+---+fff+---+-~.

(2.21)
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Table 2.2 Dictionary for pinball propagator
including time

Word Diagram
| PN ¢
125
Py, ty— 1) %
Ty f;
. rj,tj
Polesyxp, t—t {
olEn X ty— 1) 4

P(4) éi)

The unpleasant integrals parading through this expression may be removed
by noticing that they all have the form of ‘folded’ products. This means they
can be converted into simple products by a Fourier transformation. Suppose
we define the transformed propagator, Po(r,,r;, w) (w={frequency) by

+o
Po(l';, T 4= tg) = ziw f dw e"“’(""“)Pn(rJ, T, w) (2.22)
—-@

with a similar expression for P(r),r;,w). Then the first two terms of (2.21)
become (note that we can integrate over g from — « to + © because condition
(2.8) automatically limits the integral to the region #; — #,):

$o ,
1
Py(ryry, ty—1) = I J- dw 71U P(ry 11, )
—m

+o0
J. dtg Polxe, T, to— 1) P(G) Po(Xy, Yo, t2—te) =

-

+

+w
= f di‘a[%r f dw’e""’"’“"‘ﬁl’n(rg,rl,w’)]><
—

-

+ o
x P(G) % l:%,} _[ deo ¢~0219) Py(rz, 1, w)] =

F |

2.3) CLASSICAL QUASI PARTICLES 35
1 + o + o
= (2—")'2' f dw f dew’ Po(l'G, ry, w') X

-
©

+
% P(G)Py(r,, g, w) e/ t—wid J‘ dtge-iteter~ad

-

— e
2ud(w’—w)

+ '
= zl,_,, f des €= Pofxg, 11, ) P(G) Pofrz, Yo, ). (2.23)

Continuing thus, and finally taking the inverse transform, yields
P(ra, 1y, @) = Py(tz, 11, )+ PolXe, Ty, @) P(G) Polrz, g, @) 42+ (2.24)

This is just as simple as the series (2.13) for the time-independent case. We
can use the partial summation trick on it just as before. Thus inclusion of
time in the propagator creates no special difficulties. Note that the Fourier
transformed series may be gotten directly by using a revised edition of the
‘dictionary’, Table 2.2, in which the diagrams are for transforms of the
propagators, as in Table 2.3, Hence the diagrams for (2.24) are just the same

Table 2.3 Fourier transformed pinball dictionary

Word Diagram
X
P (rjs Ty w) w 'H\
LY
X
Pyt 1y, w) w

P(A) Q]i!)

as those in (2.20) provided we erase all the £’s and put in all the w’s. Thus,

we have ' Tz
] I2 Iz L] w
w w Ig
@ = Aw + Ig + Iy + -+ + @ + .-, (225
w @ | o8
Iy r; 31 I w
r;
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We shall not actually apply this formalism to the calculation of classical
quasi particles—this would take us too far afield. Instead we go on directly
to the quantum case.

Exercises

2.1 Write the diagram series for the propagator P(r,,r;) assuming that the scatter-
ing at both the monkey and the lion are large, while all other interactions are
smalil, Include all terms through second order, plus a couple of third-order
terms. How many diagrams are there in ath order?

2.2 Translate the first few terms of Ex. 2.1 into fanctions.

2.3 Evaluate the above propagator by partial summation assuming that all
Pylr,r)=c. )

24 A‘;(sﬂn;i)ng all free propagators=¢, generalize the above results to include
scattering from all animals.

Chapter 3

Quantum Quasi Particles and the Quantum
Pinball Propagator

3.1 The quantum mechanical propagator

In this chapter we are going to solve the simplest existing example of a
quantum field theoretical problem, We call it the ‘quantum pinball game®
since it is the precise quantum analogue of the classical pinball machine just
discussed, and in fact gives rise to a diagrammatic series having exactly the
same form as (2.25). It is a sub-trivial problem, one which can be solved in
a microsecond by elementary quantum mechanics. It takes a little longer to
do by diagrams, but like its classical cousin in Fig. 2.3 has the great merit of
illustrating all the basic principles without immersing the reader in a morass
of mathematics. At the end of the chapter, the diagram method is applied
to a non-trivial problem, i.e., finding the energy and iifetime of an electron
propagating through a set of randomly distributed scattering centres (e.g.,
impurity atoms in a metal).

The fundamental difference between the classical propagator, P, and the
quantum propagator, G, is that P is a probability, whereas G is a probability
amplitude, with corresponding probability given by |G|? (= G*G). Thusin the
classical case, the total probability for propagation from point 1 to point 2 is
just the sum of the probabilities for each propagation process taken separately:

P(2,1)c1ass1ca1= P(process I) + P(process IT) + ---,

But in the quantum case, the total probability amplitude is the sum of the
probability amplitudes for each process taken separately

G(2,1) = G{process I) + G(process IT) +
so that the corresponding probability is given by

P2,D)quanum= G*G = |G(D|? + |GUD)|* + GAY* GAT) + GIN* G(I) + - - .
uw_; e\ ]
P P(II)

-
interference terms

Because of the characteristic ‘interference terms’, the quantum probability is
not just the sum of the probabilities for the individual processes, in contrast
to the classical case,
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