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We shall not actually apply this formalism to the calculation of classical
quasi particles—-this would take us too far afield. Instead we go on directly
to the quantum case.

Exercises

2.1 Write the diagram series for the propagator P(rs,r;) assuming that the scatter-
ing at both the monkey and the lion are large, while all other interactions are
small. Include all terms through second order, plus & couple of third-order
terms. How many diagrams are there in nth order?

2.2 Translate the first few terms of Ex, 2.1 into functions.

2.3 Evaluate the above propagator by partial summation assuming that all
Polr,r)=c.

24 Ass:m:ing all free propagators=c, generalize the above results to include
scattering from all animals.

i

Chapter 3

Quantum Quasi Particles and the Quantum
Pinball Propagator

3.1 The quantum mechanical propagator

In this chapter we are going to solve the simplest existing example of a
quantum field theoretical problem. We call it the ‘quantum pinball game’
since it is the precise quantum analogue of the classical pinball machine just
discussed, and in fact gives rise to a diagrammatic series having exactly the
same form as (2.25). It is a sub-trivial problem, one which ¢an be solved in
a microsecond by elementary quantum mechanics, It takes a little longer to
do by diagrams, but like its classical cousin in Fig. 2.3 has the great merit of
illustrating all the basic principles without immersing the reader in a morass
of mathematics. At the end of the chapter, the diagram method is applied
to a non-trivial problem, i.e., finding the energy and lifetime of an electron
propagating through a set of randomly distributed scattering centres (e.g.,
impurity atoms in a metal).

The fundamental difference between the classical propagator, P, and the
quantum propagator, G, is that P is a probability, whereas G is a probability
amplitude, with corresponding probability given by |Gj* (= G*G). Thusin the
classical case, the total probability for propagation from point 1 to point 2 is
just the sum of the probabilities for each propagation process taken separately:

P(2,1)c100s1em = Pprocess I) + P(process IT} + -+,

But in the quantum case, the total probability amplitude is the sum of the
probability amplitudes for each process taken separately

G(2.1) = G(process I) + G(process IT) + -+ -
so that the corresponding probability is given by
P2 Dquanum= G* G = |G| + |GAD|* + GA)* G} + GUD* G(I) + - -.
— Y s

Y
interference terms

P P(ID)

Because of the characteristic ‘interference terms’, the quantum probability is
not just the sum of the probabilities for the individual processes, in contrast
to the classical case.
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38 A GUIDE TO FEYNMAN DIAGRAMS [3.1

A familiar example of this is the decay of an atom, molecule, or nucleus
from a state i to a state f by means of photon emission. Suppose the atom
can either decay directly: i — f, or via the intermediate state m: i —m ->f.
Then we have {(call 4 the probability amplitude):

P(i—f) = A*A = |AGi > f) + AG - m — )]
= |A@ = NP + | 4G > m > ) + A*( - ) Al > m > f)
+AXi—>m—>[AE—~>f)

which shows the interference between processes / — fand i —m — f. (See
also Feynman (1965), pp. 19, 20.)

Let us begin by defining the quantum propagator in general, then show
what it looks like in the case of free particles and quasi particles. The quan-
tum analogue of the classical propagator is (assuming that the Hamiltonian
is time-independent, so that the propagator depends only on time differences):

iG(ry, T, ta—Wpoey = Gt (e, 1, 12— 1)

= probability amplitude that if at time #, we
add a particle at point r, to the interacting
system in its ground state, then at time ¢, the
system will be in its ground state with an
added particle at'x,. : 3.1

The i factor is purely for decoration (a2 matter of convention) and the + super-
script denotes £, > ¢;. {The precise meaning of the word ‘add’ here is dis-
cussed in detail in §9.2.) The probability corresponding to the amplitude (3.1)
is

Pyt ta—11) = Gty 1y, t,—1)* GH(ra, 1y, y—1y). -

Note that it is not necessarily the ‘same’ particle which is observed at #;, since
this has no meaning in the systems of identical particles with which we shall
generally deal. Note also that a more precise way of saying that the particle
is “at point ry’ is to say that it is ‘in the position eigenstate 8(r—r,)".

The quantity G* defined in (3.1) is called a ‘retarded’ propagator (or
Green’s function). By definition, it is equal to zero for £, < ;. There is also
an ‘advanced’ propagator, G-, which is finite for #, < ¢,; this will be discussed
in chapter 4. (See appendix L for other types of retarded and advanced
propagators.) '

It is actually more convenient to work with an equivalent definition of G in
terms of arbitrary single-particle eigenstates, ¢.(r), instead of position eigen-

A
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states. Then we have
iG*(k2, k1, t2 = t1)s, > ¢, = probability amplitude that if at
time 7, we add a particlein ¢, (¥}
to the interacting system in its
ground state, then at time £, the

system will be in its ground state
with an added particle in ¢, ().  (3.2)

For t, <1, G* is defined so that:
iGH ko, ki 2~ t)ar, = 0. (3.3)

A convenient choice for ¢,(r) is the eigenstates of the unperturbed single
particle Hamiltonian H; in Appendix (.2), which we will call H;:

=2 - Ly -
Hy = 2m+ Ulx) = 2mV,+ Ur) (fiset =1)
with |
Hydulr) = e dila). 34
If U(r)=0, then this is just the free particle case:
W R P
Hy = “m’ $ilr) = ‘\/—Qe » &= . (3.5)

where £2=normalization volume. We shall usnally set A=1. Spin has been
neglected for simplicity. '

(Note regarding notation: In (3.4), the subscript & (or k,, or k;, etc.) stands
for all the quantum numbers necessary to designate an arbitrary energy
eigenstate. The particular eigenstates will be labelled with p-subscripts thus:
&, (1), P, (X), P, (L), ... ., OT, for short ¢y(r), ¢a(r), ... (the arrangement is roughly
in order of increasing energy). In the special case where U(x)=0, k is a wave-
vector and will be written k (or k, ¢ if spin is included).)

Definition (3.2) describes ‘propagation’ of a particle from state ¢,(r) to
$r,(r). Note that if k, =k,, the particle propagates in time only.

Let us first get the free propagator G§ (no perturbing interaction), Suppose
at time #; the wave function of the free particle is ¢, (r). Then we have:

¢(r1 1) = ¢, (@, (3.6)

At later time 1,, by the time-dependent Schrédinger equation, we find that
the wave function has become

Y, 1) = Py (r) efenltro X))
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where e, is the single particle energy of (3.4). The probability amplitude for
the particle being in state $;, at time 1, is then just the component of (r,22)
along ¢y, or:

[ drpte, ) g 0) = et [ gy () S0, (3.9)
——
Skzh
whence, by definition of G*:
Gg—(kbkl’ ’2“1) = _igtz—he““h(‘r“) skzkl
= 8y, 1, Gilkr, 12— 1)) (3.9
where — i, e, for g, # 1y 210
Gg(kitz—tl) = ) for t2 = tl ( .1 )
and
=1, ift,>1
a"‘"{ =0, if tz < ti. (.11)

The 8,,_,, factor is put in to take care of the fact that by definition (3.3), G*=0
for t,< ;. Note also that G§ =0 for £,=1,, by (3.3). (See (9.2), (9.4), end of
appendix F.) Note that for fermions, all levels up to 5 (=Fermi energy—see
§4.2) are filled, so we can only propagate a particle with e, > €.

Just as with the classical pinball propagator, it is convenient to work with
the Fourier transform of (3.10) (w =frequency or ‘energy parameter’):

+0

G'o"(k, w) = —i f d(t;— 1) Brz-—h glolta—tr) g—iexltr—t1)
—w
I{w—ex) (fa—t1} | 0 1 I(cw—ex)
e e
= (=1 = - . (3.12)
w— € 0 =€y W~ €,

Because of the exponential oscillating at e, this function is not well defined.
In order to get around this difficulty, we have to slightly modify the expression
for the free propagator. This is done by multiplying the propagator by the
factor exp(—8(t, —1;)), where 8 is a positive infinitesimal such that § x o= co.
Then (3.10) becomes:

Gk, t,—t) = — fﬁlz_'le—:(e,_..uuz-:l), (3.12)
For any finite (£, —1,), we have 8 x (t,—#,)=0, so this is just (3.10). But for

infinite (t; —1,), 8 X (t,—#,) = 50 G§=0. When (3.12°) is placed in (3.12), we
find .

1 eHw—€i+id)m 1

Gilk, w) = (3.13)

w—ek+i8_ w—ek+i8_w-e,‘+i8.
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In Appendix I, itis shown that the inverse transform, i.e., the Fourier transform
of (3.13), yields exactly (3.12),

The above medification of G} has no physical significance since #,—1, is
always finite in any experiment. However, itis mathematically very convenient,
because it allows us to work with well-defined integrals,

Note: The usual way of introducing the modified free propagator employs
the integral representation of the step function:

+eo dw' e"‘”'“z—'l)

2ni W +id

8 (3.13)

-y T T

This is not precisely a true step function but rather 2 modified step function,
which can be seen by evaluating it using exactly the same technique as in
appendix I. This yields

e-8t-1),  for(t;—1) >0 .
fma = { 0, for (t;—#,)< 0 (3.13)
which is just (3.11), except when (¢, ~#,} — ¢, where it goes to zero, Inserting
(3.13") in (3.10) yields just (3.12°), Alternatively, we can place (3.13')in (3.12),
integrate over f,—1, first (which gives 2#8(w’—w+¢,), then over «’ and
immediately obtain (3.13). :

In this transformed version, (3.13) it is seen that the free propagator
possesses poles at (i.e., infinitesimally close to) w=¢,, i.e., at the energy of the
added particle in state ¢b,. This turns out to be quite general, and in fact it may
be shown that (see appendix H):

The poles of G*(k,I;w), the Fourier transform of the single-
particle propagator, occur at values of @ equal to the excited
state energies of the interacting (¥+ 1)-particle system minus
the ground energy of the interacting N-particle system. (3.14)

This property accounts for the extraordinary utility of the propagator in
many-body theory,

Now consider the propagator in the presence of interaction. Analogous
to the classical case in chapter 2, quantum quasi particies act like free particles
except that they have a new energy e; instead of ¢, and a lifetime »,. There-
fore we expect that if the added particle behaves as a quasi particle, the single-
particle propagator will have the same form as the free propagator except for
the replacement of €, by ¢; and the inclusion of an exponential decay factor
with time constant 7,. One more thing: In a Fermi system, because of the
Pauli principle, each state can hold at most one particle. Therefore, if state &
is already partially (or fully) occupied, the probability amplitude that we can
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add an extra particle in state k will be less than 1. Hence we have to multiply
by a factor Z, < 1. This gives us:

(K, ta—1)) = —iZyeter et g—{t—tiime (3.15
%ﬁlde
This has the Fourier transform
Z
k, —_— (3.16)
%:ﬁfgk CU) “'Ek+!1' 1’

For these expressions to be sensible, it is evident that the lifetime of the quasi
particles must be long, so that the width of the energy levels, 7;* (see appendlx
of after (s7.43)) is much less than the values of the energies themselves, ie.:

il &£ € (3.17
(A more exact condition on 7y is given in (8.21),)

Thus, if G* is caleulated, and it is found that it has the above form, then
the system is describable in terms of the simple quasi particle picture. Such
systems are rewarded with the name ‘normal’. On the other hand, even if
the system turns out to be of the less co-operative ‘abnormal’ variety where
(3.16) does not hold (like for example the one-particle system of (4.39), or
the superconducting system of chapter 15), we can still get the excited state
energies by means of (3.14),

It is still possible (in the case of normal systems) to interpret the poles of
the quasi partxcle propagator (3.16) as yielding the excited state energies of
the system (as in (3. 14)), if the energy is regarded as being complex, with &
being its real, and i+ its (small) imaginary part:

.(3.18)

— r . _!
Wpole = €— 1Tk -

Such complex energies are the same sort of thing we meet in the case of an
atom in an excited state, ¢, with energy €, In the absence of interaction with
other atoms or with radiation, the wave function is

llhn(t) = ¢u e-ft‘n t.

If weak interactions are turned on, the energy shifts to e, and the atom starts
to decay out of state ¢,. Thus, the approximate wave function may be written

fnlt) = dne (3.187

which has just the form of (3.18"), but with a complex energy e,—i7;" re-
placing the real energy ¢, (See note after (3.70) and also after appendix

(H.10))

(3.18)

—len’ ¢ e—-l]'rn — ‘}5 e—i(e.. —iTa"1) 1
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3.2 The guantum pinball game

In order to illustrate the principles involved, we will now find the propagator
for a simple system consisting of one particle in an external momentum-
conserving potential, which turns out to be the exact guantum analogue of
the classical pinball game. Of course, in a one-particle system, we cannot have
quasi particles in the ‘real particle plus cloud of other particles’ sense. How-
ever, as mentioned in connection with conduction electrons in §0.2, we may
rather loosely regard the particle as being clothed by the external potential
itself,

The quantum pinball game consists of a single free particle subjected
simultaneously to two perturbing potentials ¥, ¥;, which are the analogues
of two different animal scatterers in the classical pinball game. The un-
perturbed Hamiltonian, wave functions, and energies are given by (3.5). We
take as the perturbation the ‘velocity dependent’ potential

V(p) = Vy+ V. = Mp?+Lp* = ~ MV3+ LV} (3.19)

where M, L, are real constants, and it is assumed that M>1I.

This odd-looking potential, which has been chosen because of its great
mathematical simplicity, may have a traumatic effect on some readers. It is
certainly not the sort of potential one meets on the street—those are mostly
of the familiar V(r) form, Nevertheless it is quite easy to construct perturba-
tions of the form (3.19) artificially. For example, the Hamiltonian for the
centre of mass motion of a free hydrogen atom is H=p?/(m+m,) where
m=proton mass and m, =electron mass. This may be broken up into

e ~Tnp
9 M’}r\ 7R QJ

and the second term treated as if it wére a ‘perturbing potential’. In a similar
fashion, a p* term can come as a relativistic correction when we expand the
relativistic Hamiltonian:
2 4
H= m2c4+ 2 o2 4 ~m CZ+P____.__p
(o c*+p*c?) 0% T2my Smict
In fact, if we regard this as the relativistic Hamiltonian for the centre of mass
motion of a free hydrogen atom, with my=m-+m,, then we can write

m, pt

~ 2
2 (nm) @ g e G Ty e

which has just the form (3.19), éxcept for the unimportant constant term.
!’:‘.xamples of real velocity-dependent potentials arise in the case of an electron
in 2 magnetic field (¥ o A+p), and in nuclear physics.
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The problem, then, is to find the energy of the free particle when it is per-
turbed by ¥ (p).

Let us first look at the conventional solutlon of the problem Since ML,
we may at first neglect the L term and have V(p)~ Mp? so

P2 2
H= %-I-Mp . (3.20)

Because the perturbation has the same form as the unperturbed Hy=p%/2m,
the perturbed wave functions are just the oid ¢,’s of (3.5) and the new energy is

€ = (53"-1 +M )kz. (3.21)

For purposes of comparison with appendix («/.21), this result may be ob-
tained by means of the trivial ‘canonical transformation’

_P e (L 2
H=Lipmpsp = (2m+M)p +0. (3.22)
Hy, H Hy H

Thus, Hy may be regarded as describing a sort of rudimentary *quasi particle’
having a modified energy dispersion law given by (3.21). (In this simple
example, the ‘fictitions bodies® of (#.21) and the quasi particles of (o#.43) are
the same thing.)

Consider next the effect of adding the L term. This also has the same elgen-
functions as H, and we find:

LV4¢y, = Lk* ¢y (3.23)

from which it follows that the total energy of the particle is
" 1
G = (E+M)k2+Lk4. (3.24)

Let us now solve the same trivial problem with the aid of the single-particle
propagator and see how we can get the above energies, €, &, as ‘quasi par-
ticle’ energies from the poles of the propagator. This requires that we first
obtain the perturbation series for the propagator analogous to the series
(2.21) for the classical animal game case. We will get this series by the same
sort of physically intuitive argument used in the classical case. (The rigorous
mathematical way of getting the perturbation series is outlined in §3.4.)

According to the instructions in the definition of the propagator, at time ¢,
a particle is introduced into the (in this case, initially empty) system in state
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¢h(r)=9'*exp(ik1-r), and propagates through the system, being scattered
Zero, ONe or more times by the external potentials:

Vae= Mp* or V= Lp o B29

By definition (3.2) the propagator iG*(ky, Ky, 2,~1,) is just the probability
amplitude that the particle will be in the state ¢,,(r)= 2 *exp(ik,r) at time #,.
Analogous to the animal case, this amplitude iG* is just the sum of the prob-
ability amplitudes for all the different ways the particle can go through the
system, beginning in state ¢;, and winding up in state ¢,.

For example, the simplest way the particle can propagate through the
system is freely, without interaction. The probability amplitude for this is
just the free propagator 8y, x, G{(ky,72—1,) as in (3.9), (3.10). Another way
is to enter in ¢y, at time #;, be scattered into state ¢, at time #,, by the potential
¥ u, then continue freely in ¢y, until time ¢,. (It may seem peculiar to say that
the particle is scattered by the potential V), at time ¢4, or to say that the
particle is scattered several times by the potential, when the potential is
actually there the whole time. However, this is just a result of the fact that
what we are doing in such a perturbation expansion is to decompose the total
propagator into primitive components, each component being an instan-
taneous scattering by the potential. At the end we integrate over all times as
shown in (3.28), and sum over all sequences of scattering processes as in
(3.30), thus ‘putting the propagator back together again’) The amplitude
for this second way will be, by analogy with the classical pinball case, the
product of the amplitudes for the independent processes it is composed of.
(That these processes are independent can be seen from the fact that a particle
which has been scattered into state ¢, from state ¢; cannot be distinguished
from one scattered into ¢, from another state ¢,. That is, the particle now
in ¢ has no ‘memory’ of how it got there, just as in the classical pinball case.)

The first of these independent processes, free propagation from f, to £4,in
state ¢, , has amplitude iG{(k;, tp— 1), according to (3.10). The amplitude
for the second process, i.e., scattering from ¢, to ¢, by ¥, at time 4, can
be obtained from ordinary time-dependent perturbation theory as follows:
Let c; be the probability amplitude that at time ¢ a system is in state ¢,. Then
at later time, ¢, the time rate of change of any particular ¢, say ¢,, under the
influence of perturbation ¥, is given by:

&t) = —i % Vyyc,eltroe—t) (3.26)
{

where ¥, is the matrix element of ¥ between states ¢, ¢, (see, for example,
Dicke (1960), Eq. 14-57, with fi=1). In the process under consideration, at
time #5=1,4, the system is definitely in state ¢, , so ¢;=8,,. The perturbation
V="V Hence the probability amplitude per unit time that the system under-
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goes a transition from ¢, to ¢,=d,, at time £, (ie., ¢ here is also equal to
H M) is . .

ék.(t = tM) = —iVMu.t, = —i‘[ d3r¢::(r)VM¢k1(r) =

= +iM [ Br¢t, VP, = —IMKISyy.  (327)

The 8¢, ;, shows that the process here conserves momentum so that the particle
still has the same momentum after scattering. The amplitude for the last
process is iG{(kz, t2—12). Hence the total amplitude is the product

-+ o
= f dtps GE (K, 1r—11) Vs, 1, G (Koo 12~ tar).  (3.28)

—w

Prababih‘ty]
Ampll't ude tHi—tar—>t2

We have integrated over 4 since the collision with ¥, could have occurred
at any intermediate time fy<f);<f;. Note that the f-function in Gt (see
(3.10)) automatically restricts the region of integration to ) <fp<ty.

Similarly, there can be an intéraction with ¥y described by the matrix
element

—iVy,,,, = =LK 8, | {3.29)

which also conserves momentum. There are also second- and higher-order
processes in which the particle collides with Vs and ¥ any number of times.
This gives us the series expansion for the propagator (set k; =k, =k because
of conservation of momentum here), after cancelling the i’s:

+eo

G*, o=t = Gi ty— 1)+ [ Gy, tre—11) Ve Gk, t2= 1)

+o
+ J. deGf;(kst—'ﬁ) VLuGbl-(kst2—rL)+ '

+| drMa't;,,---+J' dtggdiss st

+ J' dtpgdtrg@tsy 4. N (3.30)
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Just as in the classical pinball case, the integrals in the above series may be
eliminated by taking the Fourier transform. This yields, analogous to (2.24):

Gk, w) = Gi(k, w)+[G§(k, )P Vag,o+ (G k, )] Vi, +
+HIGEP Vit + 2P Viag Vi + [GEP VEL+
+IGS Vit (3.31)
We now pull the same trick used in the classical case and make a dictionary
to translate the above series into diagrams. The primitive diagrams are in

Table 3.1.- Compare this with Table 2.2, which is in (r, ¢)-space, and Table 2.3
in (r,w)-space. (Equations (3.30), (3.31) could also be written out in (r,#)- and

(r,w)-space but in the present case this would not be very useful,)

Table 3.1 Diagram dictionary for quantum pinball propagator

{k, t)-space (k, w)-space
Word Diagram Word Diagram
. kyt?
jG'*-(kZ! kls 12“" tl) 'ﬁ 22 iG+(k21 kl: w) w ’H’kz
k¢ k,
Gk, 12— 11) ‘}A t i
k j =

)

m m
- iVAm @ - .!'VA_‘ @
! !

Witp this dictionary it is easy to write out the series of diagrams corre-
sponding to (3.30) or (3.31):

k k
kmo=ky+ + @)+ 4+ 4+ +oee L (332)
k k

wl}ere the lines may be labelled with ¢’s to give (3.30) or «’s for (3.31). Thisis
evidently the sum of all possible different diagrams for this case.
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Now, since we assumed that M > L, all interactions with ¥, may be neg-
Jected, and the above series may be approximated by

.. (3.33)

»
+
+
+
+

This is the precise analogue of the partial sum over all monkey diagrams in
(2.17). And, as in the monkey case, the summation is easy, since once again
it is just a geometric series, Translating (3.33) into words with the aid of
Table 3.1 (use (k,cw)-space), cancelling i’s and dropping (k,w)’s for brevity
yields

G K, ) & GE 4+ (G Vg + (G Vit -
= G§[14 G} Vag+(GE? Vi, +++]

Gt 1

- = , for|GiV, 1. (334
1=Gt Vamr (GO — Vg or |G5 Vsl < 1. (3.34)

This same result may be obtained conveniently in a way which saves 2 lot of
writing by manipulating the diagrams themselves; this is legitimate because
in (k,w)-space each diagram part stands for a factor. Thus (3.34) may be
re-written:

TR Y
lrdrdr
A

e

1
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which may be then translated into

.
(G~ Vit

i.e., just the result (3.34). (Note: the little *stumps’ of line connected to @

have no value in themselves. They just show where the propagator lines are
to be attached!)
(Observe that (3.35) may be written in a very useful alternative form, i.e.

-t

This may be proved by iteration:

Gk, w) ~ (3.36)

(3.36)

AN R

which may be solved algebraically to yield (3.35). However, (3.36") has the
advantage of being more general than (3.35) since it may also be used when the
diagrams do not factor. For example in (k,#)-space, it yields an integral
equation instead of an algebraic one. (See exercise 3.8).)
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Finally, we substitute for G§ and for ¥, and obtain:

1 1
+ = = . .
Gk, @) w—eFi8=Vy,, o—(e+MED+I8 (3.37)
Comparing this with the quasi particle propagator (3.16), we find

. 1

€ = e+ M2 = (ﬁ-l-ﬁ{{)k2

D (3.38)
k 3 .

That is, the interaction with ¥, has ‘clothed’ the particle, turning it from a
‘bare’ into a ‘quasi’ particle, having modified energy dispersion law given by
¢ in (3.38) and infinite lifetime. And comparison with (3.21) shows this to
be precisely the same result obtained by direct solution of the Schrédinger
equation!

On second thought, when we realize that it has taken us three pages to do
by diagrams what we did directly in three lines, there appears to be little
cause for celebration. We seem to have built an elephant cannoen to shoot a
horse-fly. Of course this is not true, The quantum pinball game is intended
only as a transparent example to introduce the general principles. The big
many-body game will come later. Furthermore, at the end of this chapter,
in §3.5, we apply the method to a non-trivial one-particle problem: finding the
energy and lifetime of an electron in an impure metal.

In this simple example, it is actually possible to do much better than just
the partial sum (3.33). We can in fact sum over all the diagrams of (3.32) as
follows:

«"} = +x|:1 + J[X@ + }x@ + Fx@z + 2x+zx@x® + ]
= }x[l-}- }x(@-ﬁ-@) + rx(@+@)2 +]

{._= 1

@@ {-@-0)

(3.39)
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or, translating:

_ 1 !
GHk,w) = fmy o (
(GE (Vata+ Vi) _(;c_m +Mk2+Lk4) +1d

(3.40)

which gives
. k2
€ = E+Mk"+l.k‘ (341)

in agreement with (3.24). This shows that we could just as well have taken
V=Vt ¥y together from the start and represented them by a single diagram,

@. The potential was broken up into two parts just to make the parallel

with the classical pinball game more obvious.

3.3 Disappearance of disagreeable divergences

It is important to note a weakness in the above method. The geometric
series in (3.34) converges only for |GF ¥4,,| < 1, which means that

Mk?
w-—ek+i8

w > €k+Mk2
w < Ek—Mkz.

<1 (3.42)

But to get (3.38) we set w=¢, -+ Mk? which is just where the series begins
to diverge! This is a typical example of the sort of divergence which plagues -
the diagram method. The usual household remedy is to assume that the
propagator is still valid for w in the region of divergence. Or, in more fancy
language, one assumes that the partial sum result for the propagator may be
‘analytically continued’ into the divergent region. This might be called ‘the
Hypothesis of the Disappearance of Disagreeable Divergences’.

In many cases one can justify this by using a different method to get the
propagator. We can do just this in the present case. All that is necessary is
to take for the unperturbed Hamiltonian of (3.4)

2
Hy = 2~+ Mp? (3.43)

instead of just the p?/2m in (3.5). The free propagator for this new H is, by
exactly the same argument Jeading to (3.13) just
' 1
Gg‘ (k! w) = k2
w—(2—+Mk2)+i8

(3.44)

which is precisely the result in (3. 37) This shows that the propagator (3.37)
is good for all w.
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Another indication that such divergences are largely spurious (Kurki-
Suonio (1965)) is that if we do the partial sum in ¢-space instead of w-space,
the divergence does not occur, at least not in this simple case. Thus, using
(3.30) and Table 3.1 and summing just over terms containing the V,, inter-
action, we find:

]
G+(k, ty— tl) = _ie_iﬁ(h—“)[l +('- iVMn—) j dtM+
h

F(—=iVag)? j': dt s ju'd:M+ o ]

3] n

il

By — ; 1 f
— jetelt—t) [l+(—1VMtk)(t2-t1)+ﬁ(_lVMkt 2(‘2""1)24'

1. .
+§“!(“‘1VM..)3 (tg— 1)+ ]
- ie—!ég(lz—rl) [e—-fVM-t(-fz—’l.)] (345)

which is just the Fourier transform of (3.37) and converges for all values of
- iVMu(tZ_ tl)‘

3.4 Where the diagram expansion of the propagator really comes from

The results in this chapter were obtained by analogy with the classical
pinball case. Since such intuitive arguments may seem like voodoo to some
readers, we will now show in a rough way how the diagram expansion of G in
this single-particle case can be gotten from the Schrodinger equation. (The
derivation for the many-body case is in the Appendices.)

The first thing to realize is that G§ and G* are actually Green’s functions.
Recall that if we have a differential equation of the form

Ljx, 1) = 0, 0), 49

where L is a linear differential operator which does not depend explicitly on
x or ¢, then the Green’s function, G, associated with this equation is the
solution of

LG(x—X,t—t) = 8(x—x")3(t~1). (3.47

Now the unperturbed Schrddinger equation may be written

+——+i-—~)t/1(x, £) =0. (3.48)

v: o2
2m ot
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This has the form (3.46) (with f(x,£)=0), so that the associated Green's
function obeys

v: .2 by g ,
+-i-—n;+1-é-; Gx—-x,1—t) = S(x—x")(t~1"). (3.49)
Fourier transforming G, we have
Glx—x,t—t") = i
s = (51_558 Gk, t—1). (3.50)
Setting this into (3.49) yields
k2 .0 ' ,
—E'HE Gk, t—1) = 8(:—:).. {3.51)
If we now use for @ the free propagator in (3.10):
G = Gik,t—1") = —if_ el (3.52)
and use the fact that
do,
ol 3(x), 1(x)8(x) = f(0)8(x), (3.53)

we find lfhat (3.51) is satisfied, showing that G§ is indeed a Green’s function.
In a similar way, the Schrdinger equation with a perturbing potential of
form ¥ (V) (asin (3.19)),

\Z é
(45415~ Y@ dx) = o, (3.59)

has the associated Green’s function equation (in k-space):
k2 3, .
[-ﬁwa—— V(k)] GHk, t~1) = 8(t—1), (3.55)

where V(k) is the Fourier transform of V(V). The solution to this may be
written as an integral equation
+ @

GHk, t—1) = GI(k, 1—1)+ f dt’ Gk, t— 1" V(&) Gk, " — 1), (3.56)
as can be seen by substituting (3.56) in (3.55) and using (3.51) with G=G{.
Finally, we obtain the perturbation expansion for G* in terms of G§ by
iterating (3.56):

. + o
Gk, t—1) = Gile,t—1)+ [ A" Gk, 1—1) V() Gk, t"— 1)+
—_—
4w +coo
+ [ [ drdmGEves VG4 (3.57)

— =
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which is just the series (3.30). The translation into diagrams is accomplished
immediately by using dictionary Table 3.1,

It may be remarked that the Green’s function for the many-body case
obeys an equation of type (3.47) but with L a non-linear operator.

3.5 [Energy and lifetime of an electron in an impure metaf]

(This section can be skipped on first reading!)

‘We will now apply the propagator method to a more realistic problem, i.e.,
an electron in an impure metal. For simplicity, let us pretend that the regularly
arranged lattice ions in the metal have been removed, so that all we have left
is an electron interacting with a set of N randomly distributed impurity ions
(see Fig. 0.13B), which we assume are identical, in a volume £2. Then, as
discussed in §1.3, the propagator will be given by (1.2) or (2.25) with the
circles interpreted as scattering from the various jons:

(3.58)

where the k’s denote momentum eigenstates of a free electron as in (3.5), and
i denotes the impurity ion at position R;.

If the potential well for an impurity at the origin has the form W(r) then an
identical ion at point R, will have the potential W (r—R,). Hence the matrix
element for the transition k — 1 at ion # is given by

~iV(Ry) = ‘;—;’J‘dal'e'-“"”"W(r—R,)— %e—i(l W-Repy,

i
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where

Wy = J'd3 r e-tt-o-' W(r") (3.59)

The series (3.58) may now be written out in terms of functions as follows
(after eliminating the i’s and suppressing w’s for brevity, and noting that it is
necessary to sum over all values of the intermediate momentum, I):

G ky) = G3(ky) S, + GEKs) z ViR GHK,) +
+ Gi(ky) [; % ViaR)GEQL) Vu.(Ro] Gi(ky) +

+ Gs(kz)[ 3 3 Vu®)GKD 2 V.k,(n,)} 50) + % (3.60)

The above G'* is for a particular set of R,’s, i.e., a particular arrangement of
impurities in the system, and for each different set of R,’s, we will get a different
value of G*. Consider now an ensemble consisting of all possible arrangements
of impurities. Suppose this ensemble is random, i.e., the coordinate for the
ith imputity, R, is equally likely to be found anywhere in the volume £2. Let
us imagine that we compute {G*), the average value of G* for the ensemble.
Clearly, for any specific arrangement, G* 5% {G*>. But, as is common in large
systems (see Landau and Lifshitz (1959), pp. 5-8), in the limit N — « (with
N/Q = constant), the ratio of the mean square fluctuation ({(G**> —<G*>?) to
{G*>* will go to zero, so that we can take G*={G*) for all but a negligible
number of arrangements (see Kohn and Luttinger (1957), especially Appendix
B). Hence our object here will be to calculate {G*>.

The average (G*) is the sum of the average of each term in the perturbation
expansion (3.60), For the second term on the right side of (3.60) we have,
noting that free propagators may be factored out when averaging since they
are independent of R,

(65063060 £ V1 R = G5k 1) "2t (F emrmsormsy @)

The last factor here may be written

<§ etk R )= § otk By = N(ettki-k) B> (3,617

i=1 iml
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since each of the N terms is identical in form, so that we can just average over
one of them and multiply by N. For a random ensemble, the probability of
finding the ith impurity atom within volume d*R; surrounding the point R,
will be independent of R; and equal to d°R,/$2. Hence we have

(ettha=kirRi} = ?12 J.da Rie-itka-k). By = —!1-5 X £20; .- (3.62)

(Note: In a one-dimensional box of length 7.,

+Lj2
I= j dxexp(—

=Lj2

ikx) = 2k~sin(kL/2).

Because of periodic boundary conditions, the wave function at x=0 equals
that at x=_1, i.e., exp(ikx)=exp(ik(x-+L)). Hence exp(ikL)=1, or k=2=n/L
(n=integer). Thus I=L8,, Equation (3.62) is just the three-dimensional
version of this, with Q=L3. If k is continuous, the integral (3.62) yields
(2+)% 8(k, —k,), which is a Dirac 8-function.)

In the third term of (3.60), which represents two successive scatterings
from the same impurity, we have, using the same method as above:

Gﬁ(l)(g Vi R)Vis (R) )= 3 G5 E"’}%"-‘@ et 11

N
= 1 D, G Wiy W By, (3.63)
1

It is convenient at this point to change from a sum over I to an integral by

Q
5~ oF Id-“l. (3.64)

This is legitimate in the case of a large (i.e., macroscopic) system, since the
pointsIin k-space are very close to each other. The factor £2/(27)% is the density
of points in k-space. To see this, we note that in one dimension, k=2mnfL
(n=integer). (See just after (3.62).) Thus there are L{27 points per unit length
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in k-space in one dimension. In three dimensions we have L*/(2n)° = .Qj(27r)3
points per unit volume in k-space. Using (3.64), {3.63) becomes
d3
Q (2 )3 Gﬁ(l) Wk:f Wlkl 8":"1 (3‘64‘)

The fourth term of (3.60) (two successive scatterings from different impurities)
contains the average

26*(1)( 3 V.‘,.a&gm.(na>

= 2 G;(I) Wk;l Wlk1< z e=1tks—1)Ry e—‘(l-k1)'R:>
L i jmi

3
- z Gg( szf W"‘IN(N l)fd RJ J. e—I(k: 1)-Rja=i(1-k;) Ry

!
N 2
~ (E) 263(1)%,, W e Byt Buy
i

N\2
= (5) Gg(kﬂWén, ak;kl (3.65)

Here we have used that for the random distribution, the probability that
impurity i is in d°R,, and j is simultaneously in d*R; is (d*R,/2)(d*R,/$).
Also, we have assumed N> 1. Averages of higher order terms are done in a
similar way,

With the aid of these results, we can write out the series for the averaged
propagator, It helps here to introduce a couple of new diagram conventions.
First of all, since ¥,(R,) does not occur any more we use just an empty circle,
for the transition probability amplitude W,,;. Secondly, because each group of
two or more successive scatterings at the same ion has an associated density
factor N/$2, we connect successive circles representing the same ion by dotted
lines. (Note that a single scattering also has this factor associated with it.)
Thus, taking the 3-functions into account, and letting k, =k =k,, we have for
the averaged propagator:
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This may be translated with the dictionary in Table 3.2. Note that in this table,
there is no factor £2-! in front of [ d%1/(27)* because all £2-* factors are
already included in the (N¥/2) factor in line 4 of the table. (Seee.g, exercise 3.9).

Let us now evaluate (3.66) assuming the most important processes are
single scattering, and double scattering by the same impurity. This means
that diagrams containing more than two successive scatterings off the same ion
(such as for example, the fifth diagram on the right of (3.66)) are neglected.
The partial sum may easily be carried out and yields

<%k>=@ | @” Q * g; a7

i
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(Note that the complete series for (Z) is:

| N v v
N
e f—
Q
N
\
., \\
\\ . \
\ !
+ ’I + b (3.67)
/ 4 i
A /
- /
/,’

For small (¥/£2), we only need to keep termsec(N/£2), i.e., terms representing
multiple scattering from a single impurity.) Translating (3.67) into functions

(G0} = U[w — e+ 18 — 3 (&, )] (3.69)
where . '
N X (8L [Pl
20) = SWut G ) Gy a—a i B (3.69)

and we have used Table 3.2.
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Table 3.2 Diagram dictionary for electron propagating through a system of
randomly distributed impurity ions

Diagram element Factor
<H > KG*(k, 0))
k,o
} Gk, @) = —
I N e —
K, ° W— &+ 7]

1
k

! Y
N\,
A
! \
; \'. \ N
IE -—-~’I , ete. factor r
/
I//
. . d1
intermediate momentum, |
@my®

In order to find the new energy and lifetime of the eleciron, we need the
complex pole of (3.68), i.e., the «w which is the solution of

w— g — > (k,w)+ i = 0, (3.70)
(Note: If in (3.69) we use the original sum over 1, i.e., 3, in (3.60) instead of
[ a1 (see (3.64)), we find that, as expected from (3.14), the pole equation (3.70)
will have real solutions. This can be seen at once by plotting 3 (k,w)=
(N[ Wi+ (NI ) | Wil /(w— e +8) and p(k, w)=w — & vs. w and noting
that the poles occur at the intersection of 3 (k,w) and y(k,w). The complex
solutions of (3.70) arise because we have gone from a sum to an integral. The
physical meaning of this is discussed at the end of appendix H.) If W is small,
50 that 3 is small, then the zeroth-order approximation to w is w=¢,. The
first-order approximation may be obtained by setting w=¢, into 3, (k, w) and

'}
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re-solving for w, which gives
w = € + E (k, 6;‘) = g+ Re z (k, Ek) 4+ iIm z (k, Ek). (3¢71)
\ y) LN v

Y
€ -5t

Hence we need to find the real and imaginary parts of 3 (k, ).

To do this, we imagine 8 is finite to start with, then take the limit § — 0.
Multiplying numerator and denominator of the integrand of 3 in (3.69) by
w— €~ 16 we find for the real and imaginary parts of 3 (k, €.):

A1 | Wyl|* (e —€)
2m)3 (e — ) + &7

ReD (k, &) =£Wu‘+h ( )

—EW N p a1 W2
= 0 xk —Q (217)3 (Gk — eI) (3.72)
a1 8
Im 3 (k, ) = ~11m( ) (n )3 IWlklzm
dél
= —-‘rr( ) (2 )aiWIkl S(Ek ) (3.73)

In (3.72), P stands for *principal part’. (We will show why the limit in (3.72)
is a principal part by illustrating with a simple case, the function 1/x. Using
the usual definition :

—-—113;['[ fixi}=Jlli*né{ln(-—a)—-ln(—a)+Inb—~ln8}=lnbla
+s (3.74)

Using the alternative definition in (3.72):
—~;1*0jdx «3-[ 2+62_m}1n(x2+sz)|i,=|nb/a.)
(3.75)

In (3.73) we have used the ‘squeezed Lorentzian® definition of the S-function.
The results (3.72, 3.73) are usually obtained with the aid of the so-called
‘well-known theorem from complex function theory’, (see, e.g., Dennery and
Krzywicki (1967), p. 64),

I
X+ i8

Y 31:- — in8(x) (3.76)
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which is short for

ECIIE

- i'n'fdx F(x)3(x). {3.76"

This can be applied in the present case by noting that the integral in (3.69) may
be written in the general form

o ALY
Idiﬂ(l,...)-q-fs“

, A8, 9,...)

Asinf | dl I? —si———
fap [assine | BG6,8..0+R
where /, ¢, 8 are the polar coordinates of 1 and the dots ... refer to all the other
variables. Only the l-variable is relevant here. If we let x=B(/) so I=B"*(x)
then { d! may be written in terms of x, allowing (3.76") to be used. Transform-
ing back to 1 again after this is done yields

AQ,...) AQ,..)

IdslB(l,...)+i8=desl B0,)

in [ #144,..) 8(B(, ..)]
(3.76"

Applying this to ¥, with w=¢, gives just (3.72), (3.73).
Hence, placing (3.72, 3.73) in (3.71), we find for the electron energy and

lifetime;
N N 431 | Wyl|?
;= o o I 3.7
€ ek+QW,,,,+(Q)PJ o a—e (3.77
N\ &°1
e W(ﬁ) Gyt | Pl 8o — <) 3.79)

Equation (3.77) is just the result obtained from second-order perturbation
theory. Equation (3.78) is what comes out of applying the ‘golden rule’ for
transition probabilities, i.e., 7! is just the transition probability/sec for the
electron to jump from state k to 1, |W,|?, integrated over all final states |,
subject to conservation of emergy as expressed by the d-function. (For a
review of electrons in disordered systems see Leath (1970). The method above
is applied to the case where the impurity distribution is not completely random
but has ‘short-range order’ by Woolley and Mattuck (1972).)

Further Reading

Feyoman (1965), chap. 1.
Bjorken (1964), §6.2.
Feynman (1962), p. 168, §2.
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Exercises

3.1 Consider a one-dimensional system with an unperturbed Hamiltonian such that
U(x) in (3.4} is a square well of width a with infinitely high walls, i.e., U(x)=0
for 0<x<a and U(x)== for x<0, x>a. What are the eigenstates ¢,(x) and
energies €, for this system? Write out the free propagator and its Fourier
transform for this system.

3.2 The system in Ex. 3.1 is acted on by a hypothetical external perturbing potential
V{x) l=.Bx (p?/2m+ U(x))?, where U(x) is defined in Ex. 3.1. Calculate the
transition amplitude from single particle eigenstate ¢,{x) (calculated in Ex. 3.1)
10 Pm(x) under the influence of the perturbation.

3.3 Write out the diagram series for the propagator of the system in Ex. 3.1, with
the perturbation in Ex. 3.2 and evaluate it by summing to infinite order (assume
the prqpagating particle is the only particle present). ' ’

34 Whtat lg the quasi particle energy dispersion law and lifetime in the above
system? . :

3.5 Canry out the Fourier transform of the first-order terms in (3.30) and show
that you get the corresponding terms in (3.31).

3.6 Use (3.53) to verify that G{ satisfies the equation of the Green’s function (3,51),

3.7 We have a random distribution of ions with a potentia! such that Wy, = Wf £,
where f, =1 for |[p] < e and f; =0 for |p| > 4. Show that the energy and reci-
procal lifetime of an electron propagating in this sytem are

, k[N N\mWw? k k
€k=$+ (ﬁ) W+ (ﬁ)?[—a+iln(‘;ik)] fofk<a

k2
= — fork>a, where k = |Kk|

2m
_ N\ mw?
= (ﬁ)m__zwk fork<a
=0 fork>a

Whpt is the effective mass in the limit k<€a?

3.8 _Wnte (3.36"} with lines labelled in (k, £)-space. (Answer: see (10.15).) Translate
into t:unctions and show that you get an integral equation of form (3.56).

3.9 Consider the fourth-order diagram {drawn on its side to save space):

D= k P q T ]
= >0
where j 3. Calculate its average value, using the same technique as, e.g., in

(3.63) or (3.65). Show that this is the same result as you get from applyi
Table 3.2 to the last diagram in (3.66), - - g prine



Chapter 4

Quasi Particles in Fermi Systems

4.1 Propagator method in many-body systems

We have thus far defined the quantum Green’s function propagater for
t,> 11, shown what it looks like for free and quasi particles, and evaluated it
by partial summation for the case of a single particle in an external potential.
In this chapter, the technique will be generalized to many-body systems.

The starting point will be & system consisting of N non-interacting fermions
in an external field. This is really a fake many-body system, ‘since, as
pointed out in chapter 0, if there are no mutual interactions between particles
the problem is actually only a one-body problem. Nevertheless, such a
‘trivial’ system paves the way for the bona fide many-body case. First, it
shows us how to describe Fermi systems very simply in terms of a few particles
above the Fermi level, and a few removed particles, or ‘holes” below. Second,
it allows us to introduce the language of the many-body problem, i.e., ‘occu-
pation number formalism’ or ‘second quantization’, We won’t really start
talking this language until the second half of the book, but it helps to learn
some of the easier words in it now. Finally, it shows us how to extend the
definition of the propagator to the case where #; <#;. This is the time domain
where we have the apparent paradox that the particle is observed in the
system before it is put in! In this case, the Green’s function turns out to
describe the propagation of removed particles, or ‘holes’, which are repre-
sented diagrammatically by a downward-going arrow Y.

As an illustration of a real many-body system, we will take a Fermi system
with interaction between each pair of particles (no external potential).
Examples of such systems are N electrons or nucleons in a macroscopic box.
By introducing a special diagram: >~~~ for the two-body interaction, it is
again possible to represent the propagator for this case as an infinite series of
diagrams, which may be evaluated approximately by partial summation.
Some of these partial sums are listed in Table 4.1.

The Hartree and Hartree-Fock are the crudest of the approximations and
yield quasi particles with infinite lifetimes. The RPA yields the energy and
lifetime of quasi particles in a high-density electron gas, while the ladder
approximation is good for low-density systems like nuclear matter. Only the
Hartree and Hartree~-Fock will be discussed in detail in this chapter; the

latter two are in chapter 10,
64
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Table 4.1. Some important partial sum approximations

Types of diagrams

summed over Name of approximation

Bubbles Hartree

Bubbles and open oysters Hartree-Fock

Rings Random phase approx. (RPA)
Ladders

Ladder approximation

4.2 Non-interacting Fermi system in external potential: particle-hole picture

Let us first talk about the particle-hole way of describing Fermi systems.
Suppose we have a single particle in a potential U(r), with energy eigenstates
il0) (=¢p,0 Py ..) and energies given by (3.4) (see note on notation after
(3.5)!). The energy levels may be represented as in Fig. 4.1, where for sim-
plicity the system is assumed non-degenerate.

The ground state of the single particle has energy ¢,,. If we now put N—1
other particles into the system (with no mutual interaction), as for example
when filling up atomic energy levels with electrons, we find that by the Pauli
principle there can be no more than one particle in cach state. The lowest
energy for the whole system will occur when cach state is filled in turn, starting
from the bottom, as shown in Fig. 4.1(4) for the case N=>35. The highest filled
single-particle level is called the Fermi level, and has energy ey

In the case where U(r) =0, the particles are free, and the k-subscript means
momentum, or, more precisely, wavenumber. Then, in the ground state, the
free particles fill a sphere in k-space having radius kr=+/(2mey), where kj
is called the Fermi momentum. The filled sphere is called the Fermi sea. The
surface of this sphere is the Fermi surface. If U(r)s£0, then k is just a set of
three indices (we are neglecting spin for simplicity) which in general can no
longer be interpreted as momentum components. The Fermi surface is then
no longer spherical and %, becomes the vector k. {Any reader unfamiliar
with the above should see Raimes (1961), chap. 7.)

The various excited states of the system are formed by removing a particle
from a state below the Fermi level and placing it in a state above, as shown for
example in Fig. 4.1(b). The empty state, e.g., the state p, in Fig. 4.1(), is
called a ‘hole’. This is just the hole defined in connection with Fig. 0.10
except that here it is in *p*-space instead of real space. ,
_ To avoid the strain of drawing all the particles which were not transferred
in forming the excited state, it is convenient to refer everything to the ground
state, Fig. 4.1(2), and just record changes from the ground state, To draw this,
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i‘ we remove the filled Fermi sea from.the picture, yielding Figs. 4.1(c) and
4.1(d). This is called *particle-hole description’. Note that the Fermi sea is
physically still present—it has only been removed from the drawing of the

system.
‘ —®— —."—
| P - -
| P5 —_— —_— —_— ——
kF_pS -—-—.-——-—Es—GF"""—-.""—"'EF ___G.F —
by —O— —— —_ _
7 —@— S | _ ——
P2 —@— < —&— — —
P —@— ¢ —— . :
i (4) Ground (b) Excited (¢) Ground (d) Excited
state state state state
Ordinary picture In p-article—hole picture

Fig. 4.1 Non-interacting Fermi System

Observe that the ‘hole’ in Fig. 4.1(d) is not the same as that in Fig. 4.1(5),
since a Fermi sea particle has been removed from the empty state in p; in order
to produce this new type of hole. That is, the hole in Fig. 4.1(d) is a “minus
particle’ or ‘anti-particle’ rather than just an ‘empty place’. Thus it is
analogous to a ‘positron’ in Dirac’s electron theory. This new type of hole can
also be defined in position space instead of ‘p’-space if we imagine that in
Fig. 0.10, the undisturbed electron gas (coloured grey) is removed from the
entire figure, including the empty places (coloured white) where the old holes
are. Thus, each of the empty places will now be coloured ‘minus grey’
(evidently a job for the surrealist painter Salvador Dali!) which indicates the
presence of an anti-particle,

Note that ‘particles’ in the new sense exist onIy above the Fermi surface
In cases where there is a possibility of confusion, we will distinguish between
‘particle-hole’ type particles and ordinary particles by writing the ‘p’ in
italics, thus:

particle: particle in partlcle—ho]e sense. Exists only above Fermi
A surface.
i particle: ordinary part;cle Exists above and below Fermi
surface. 4.0

i
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Since a hole in state ¢, is actually removal of a particle from the system,
the hole represents energy ¢, removed. Hence the hole energy is negative
and we have

el = —¢. _ (4.2)

The shape of the hole wave function in space will be exactly the same as the
shape of the wave function of the removed particle. This is analogous to
removing a single piece from a completed jig-saw puzzle: the ‘hole’ thus
created in the puzzle has exactly the same shape as the removed piece. Thus
the time-dependent wave function for a hole in state ¢, is (see §7.5, just after
(7.77) for rigorous proof):

l,l!(f hole .. ¢ke——’(-€*)" € < €p. (4-3)

If we now associate the sign change in the e, ¢ term with the ¢ instead of the ¢,
the hole may be viewed as a particle moving backward in time. This should
not be regarded as theoretical grounds for constructing a time machine, but
simply as a convenient mode of description, It was originated by Feynman
in his theory of positrons.

4.3 [A primer of occupation number formalism (second quantization)]

(This section can be skipped on first reading!)

Although we shall not make any essential use of it until after chapter 7, it
is a good idea for orientational purposes to inject a few words here on the
occupation number formalism or ‘second quantization’ as it is often called.
This formalism is a sort of ‘census-taking’ notation which is extremely
convenient for keeping track of what is going on in a many-pamcle system.
The details are in chapter 7.

The total wave function for the ground and excited states of a system of
non-interacting particles is, (see appendix (#.3)), the product of single-
particle wave functions. However, because we are dealing with identical
fermions, this product must be antisymmetrized and the proper wave function
is the Slater determinant

¢k!(l'1) vos PrTn)

¢k,;(l‘1) e lﬁk;(l‘nr)

where the ¢,’s are the single-particle states of (3.4). If the particles are allowed
to interact with each other, or with an external perturbing potential, then the
exact wave functions of the system are no longer (4.4) but a linear combination
of &'s thus:

lI’(l'l, ‘e

1

le,r. . :/(—A{!)

(T v By) = (4.4)

wiy) = PO RN ( JTRNS S % “.5

Z Akl, .
k

1o kN
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That is, the &, ...k, for the non-interacting system are the basis states used
to describe the interacting system.

Now these are rather clumsy expressions to carry around, so it would be
desirable to have a more compact way of writing them. This may be gotten
by noting that since all particles are indistinguishable, the essential informa-
tion in (4.4) is just how many particles there are in each single-particle state.
Therefore, we could equally well specify the state of the non-interacting system
by writing @ as

q).h. . kn(rh "oy rN) = ¢nm.u,.. e Mgt .(rls erey rN) (46)

For short, we shall represent this as
(Dﬂm,ﬂu» o Mptysas = Inm’ "Pz’ b H,l, v '> (4‘6’)

meaning: ,, particles in state @,,, 1, in ¢, etc., where n,=0 or 1 't.ay the
Pauli principle. This is called ‘occupation number notation’. It is similar
to the shell notation for atoms, where (15)%(25)%(2p)! means two electrons in
the 1s state (one in the spin up and one in the spin down state), two in the
25 state, etc.

For the ground state in Fig. 4.1(g) we have in occupation number notation

qjk: =p1, kympz, kswps, ke=pa, ks=ps = llm! lpz' lp.v l.m’ l.Ps’ O.Ps’ Om’ Ops' ren 0,0,...
“.7)
The excited state in Fig, 4.1(b) is

t:pu'ﬁl-'ll‘u'x. kegmpa, keym=pa, ka=ps, ks=py = Ilm’ Im’ OM’ lpv lpa! Ope’ Opv lpv Om’ e (4'8)

For brevity, from now on we will drop the p’s and just use the numerical

subscripts. Then
D = |ny,np, 05,00 By - {4.9)

For example, (4.7) becomes
dso = llli 12, 13, 14, 15,05, 07’081 ') .>.

It is important to note that just as the original Slater determinants fom.l a
complete orthogonal set of basis functions, so do the states in occupation
number notation and we have

<n;ﬂ“"n;’-'- 1T T Id3r1.....d3rNx
NI | SIS 7% B

x¢m, any My .(l';, . -’rN)
N SUTN (4.10)

e kA S ——
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Just as in (4.5), the |my,..., y,...> may be used as the basis states for
describing the interacting system’s wave function thus:
= 3 Ay.m...|0n0n.0.0. 4.11)
HlyeenBlione
Now in most cases of interest, only a few of the particles change their
position from that in the ground state, since we deal primarily with only
weakly excited states. Hence, carrying along all the unchanged 1's in a wave
function like (4.8) is about as useful as taking along every piece of clothing
one owns, on a two-day trip. The excess baggage may be avoided by regarding
the ground state (4.7) as the ‘zero’ or so-called ‘Fermi vacuum’ of our
description, and recording in the |...> only changes from the ground state,
Thus, the ground state is written as though it has no particles in it:

@y = |0> (‘Fermi vacuum’) (4.12)

corresponding to Fig: 4,1(c). The excited state of Fig. 4.1(b) according to this
viewpoint is a particle (see (4.1)!) above ¢z and a hole below, as shown in
Fig. 4.1(d), with the corresponding state vector

S = |15,15 (4.13)

where #, p, stand for hole, particle. This is called ‘particle~hole’ notation.
Quantum mechanical operators have a new form in the occupation number
formalism. Imagine that we have initially a single-particle system in its
lowest energy eigenstate ¢4(r) (=4¢,,()). In occupation number notation

this is
Diriia1 = ¢1 = [1000...). (4.14)

If the system is now acted on by some perturbing operator V(r,p), it may
undergo a transition, say, to state ¢s, so that

Ppaar = ¢3 = [001000...). (4.15)

Thus, when written in this formalism, the effect of the operator ¥ appears as
the destruction of a particle in ¢, and the creation of a particle in ¢, This
suggests that if we define two primitive operators—c; (which is short for ¢,,),
which destroys a particle in ¢,(=4,,) and ¢} which creates a particle in ¢,—
it may be possible to write all operators as various combinations of these
primitive ones. '

This is indeed the case. Look first at the detailed expression for the effect
of the ¢’s:

€| tay e e By o) = BilBynyy .o om—1,..0

c“"l!nb ven My '> = (I ""'ni) Inll Hay .. -’nl+19 X -> (4'16)
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where the factors in front mean that c, cannot destroy a particle in ¢, if there

is no particle there to start with, and ¢} cannot create another particle in an

already occupied state. (A factor of + 1 has been left out for simplicity—see
chapter 7.) For example:

¢311111000...> = [1101100...>

¢20000...5 =0

€,[00...1;...> = 8,4]00...>

¢}]11111000...> =0

c5|00...> = (0100...>

cl, [00...0p...> = 100...1,...0. 4.17)

In the particle-hole notation, it is necessary to introduce hole creation and

destruction operators, b}, b;, and similarly particle operators al, ay, as follows:

if k, < kg, then ¢; destroys a particle under the Fermi level, thus creating a hole.
Hence

fork, > ks, ¢ =a; (patticle destruction operator)

k; < kp, ¢ = b} (hole creation operator)

and
for k; > kg, ¢} = a} (particle creation operator)

k; < kg, ¢t =b; (holedestruction operator). (4.18)

This change to particle-hole operators may be expressed compactly as the
transformation
¢r = Oprer @1+ Oppi B

= Beter G+ Oty bt (4.19)

where
0,=1forx>0; 8, =0forx <O

Simplle-examples of how the particle-hole operators work are:
ah|0y = |1 @it = 8,100,  Blal|iny = 115, 15,1]
B0y = [, B[1h> = 8100, a]0> = 10> =0,
aey =0, Bbi1% =0 : (4.20)
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In order to express other operators in terms of the ¢’s (or a’s and &%s), it is
simply required that: if @ is the operator in the old notation, and @°* is
the same operator in the occupation number (or particle-hole} formalism,
then @°°° must give the same matrix elements when sandwiched between
states in occupation number (or particle-hole) formalism that #°% gave when
sandwiched between Slater determinants. Consider first a one-particle case,
where the Slater determinant is just ;. Then we must have

0. 11 f 0], 1y = (i 07 g
(= [#@o@s@Pr=0,). @21)
A bit of Buddhistic contemplation shows that
= E @mn C:‘rn Cn (422)
mn
does the trick, since
Lo |00 150 = B 0,4 1 che o D
mn
nn

where (4.17) and (4.10) have been used. Equation (4.22) can be converted to
particle-hole formalism by (4.18). This result turns out to hold also for
systems with an arbitrary number of particles.

The Hamiltonian for an arbitrary system may be expressed in occupation
mumber or particle-hole formalism. Suppose the system Hamiltonian in old
Neanderthal notation describes a system in an external perturbing potential;

Hivws = 3 [+ 0D] 43 700 @“24)
Hy H; (perturbation)

and the single-particle states ¢, satisfy

2
[32;1-'- U(l')] i = ey (4.25)
Then it is found that (see chdpter ™
=Y egclee= Y qalat 3 ebbl
k k>kr k<kr

Hy= 3 Vmaznan"i' Z de;,b;+ Z anbman+
m,n>kr } m>kr m<kr
_ . n<ks n>kr
+ X Vonbnbl (4.26)

mn<kr



72 A GUIDE TO FEYNMAN DIAGRAMS 4.4

For a system of mutually interacting particles with old Hamiltonian
7i
Huyu= > —+ V(r,—r, 4.27
v = D, gt g V@) @.27)

—— | S —
Hy H; (perturbation)
we find

Hy= 3 ealap+ T ebybl, with ¢ = k*2m
K>ke k<ks

Hl = ’i’ E Vk!mnaﬁalaman'i'ik E Vk!mna“;a’:amb;‘l'

kJ mn>kp dm>ke
n<kpr
+otd N VigmbibeBL 8L (4.28)

k,Lmn<ks

with V.. as defined in (4.42).
It should be carefully remembered that in the case of systems with inter-
action, the wave functions are given by the linear combination (4.11).

4.4 Propagator for noninteracting Fermi system in external perturbing potential

Up to now we have worked with a propagator defined only for positive
time differences, i.¢., for #,>¢;. This was adequate for solving the super-
simple quantum pinball problern, but fails when we try to use it on more
complicated cases. To treat the general situation, it is necessary to extend
the definition to times ¢, < #;. This of course sounds peculiar, since it seems
to describe a particle propagating backward in time. However, as explained
in connection with (4,3), such ‘time-machine’ particles are not science fiction
but simply removed particles or ‘holes’. That is, a particle moving backward
in time from ¢, to #; (¢; < #{) is just a hole moving forward in time from #; to #;.

This leads us to the definition

1G(ka, kg, ta—t)y e, = G (Kay kiyt2— 1)
= (—1) % probability amplitude that if at time z, we
remove a particle in state ¢, from (i.e., if
we add a hole in ¢, to) the interacting
system in its ground state, then at time ¢,
the system will be in its ground state with
a particle removed from (i.e., an added

hole in) ¢,. (4.29)
Analogous to (3.3), for #; > #; (but not for £,=1,!), G~ is defined so that
iG(ky k1, t2—t1)y>ry = 0. (4.30)

Thus, G~ is just the hole propagator. (The factor of (—1) here compared
with (3.1) comes because we have fermions—see chapter 9. Note that G~
is called an ‘advanced’ propagator or Green's function.)
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The use of the word hole in the sense of *removed particle’ is more general
than the way it was used in §4.2. There we dealt with the non-interacting
system, so a paiticle could be removed only from k <%y and therefore all
holes had k& <kr. However, in the ground state of the interacting system, by
{4.11) there is a finite probability of finding particles above kr. Hence we
can remove a particle or create a hole (in this more general sense) above
k=kg. If the ‘hole propagator’ G~ is, as above, defined as being the propa-
gator for 7, <{y, then the free Gg has k <k but the exact G~ can have any k.

In the case of a free hole, an argument like that in (3.8) applied to the
single hole state in (4.3) yields (note that (3.8) and G in (3.9) describe particle
propagation, since €, > ep)

i, _, et fort, # 1, e, <6
k,t — . 11—Iz . 3 2 Is 13 F
Golk, 2= 1) {z‘, fort; =t (see(9.2),(9.4),end of appendix F) (4.31)
with Fourier transform
1
Golloyw) = ——gp> & < er. (4.32)

Suppose now that we turn on an external perturbing potential F(r) (this
is distinct from ¥U(r)} which is part of the unperturbed Hamiltonian), and
wish to find, say, the single-particle propagator Gt(ks,ky,ta—£) or
G1(ks,kq,w). This will be the sum of the amplitudes for all the ways the
particle can move through the system interacting zero or more times with
V(r). Previously, we wrote down the series for the propagator and translated
it into diagrams, Now we turn the trick and pull the hat out of the rabbit,
ie., write down the diagrams first, then translate them into the numerical
series. To do this, we need a modified dictionary, analogous to Tabie 3.1
with downward directed lines for the hole propagators, as shown in Table 4.2,
Observe the reversed time order for the hole propagator diagrams! This is
of course due simply to the fact that 1, <t; for holes, The reason why these
diagrams are labelled ‘ Goldstone method is discussed in §9.5.

The interaction amplitude, V,, merits some discussion. It is given by

Vie= [ 1856 V&, ) (). (4.33)

The four possibilities shown in Table 4.2 mean: (a) scattering of a particle
(remember (4.1)!) from state ¢, to ¢;, (b) the potential scatters a particle out
of state ¢;, where ¢;< e, into state ¢y, €, > er, thus simultaneously creating
a particle in ¢, and a hole in ¢, (¢}, ete. [Note that these four possibilities
correspond to the four interaction terms in the particle~hole Hamiltonian
for this case (4.26).]

Of course, the particle which emerges in state k after interaction, is not
necessarily the same particle which entered in state 1, since this has no meaning
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in a system of indistinguishable particles. Nevertheless, for the sake of verbal
simplicity, it is customary to describe interactions as if particles were dis-
tinguishable; the reader should always bear in mind that this is just a manner
of talking,

With the aid of Table 4.2, the diagrammatic series for G* may be drawn as
the sum of all possible different diagrams which can be built up out of sequences
of interaction dots connected by particle and hole lines, beginning in state k,
and ending in state k,:

ty fz t 2 73

kl kz kz [" kz
t 8+ 4g t+ tey
¢
ky ky k, ky

I 1 f 1 h (4.34)

o @ ) @ &) ®

(Note that the first diagram disappears if ky#k%;, by (3.9).) The physical
significance of the hole lines in the diagrams may be understood by looking
at the fourth diagram. A particle enters the system in state %y (=d,,) at
time 7;. At time #’, the potential knocks a particle out of the state / into state
k, thus creating a particle in k; and a hole in /, At time ¢, the particle in k; is
knocked into the hole in / causing mutual annihilation; the particle in %,
continues propagating until f,.

It should be pointed out that many diagrams in this series violate the Pauli
exclusion principle. For example, when k;=k,, in diagram 4 we have two
particles in the same state, k;. The reason why such diagrams must be
included is discussed at the end of Appendix G (see also §4.6).

(1t is amusing to do the ‘book-keeping’ on these processes by means of the
particle-hole notation, with H; as in (4.26). We have the sequence:

(1) Put in particle in state k, at time #;:

al, 0> = [1>
(2) At ¢, one of the terms in H; acts on system creating particle in k,, hole
inl
sz fazz b.’l" I 1%[) = szf I I?{p lbb lﬁz>
(Note that if k,=Fk,, we have af,|13,,14> which equals zero by (4.20).
Nevertheless, the diagram which includes this process (number (4) in

(4.34)) does not have the value zero! It is, as just mentioned, an
exclusion-principle-violating diagram, and it must be kept (see §4.6).)

Table 4.2 Diagram dictionary for many-fermion system in external perturbing potential (Goldstone method)
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(3) Att, H, acts again, destroying hole in /, particle in ky:
Vieybraw, Vi, 1|5, 15, 150] = Viat Vit | Y
(4) At 1, take particle out;
[Py 1 Vit 1120] = Viey 1 Vi [00.] (4.35)

The above diagram series may be written out in words by means of the
dictionary Table 4.2, This gives in (k, #)-space (cancel the i’s):

Gk, ki ta— 1) = Gk, ta—11) 8 1,

+
+ [ dGlers ty—1) Vi, Giller, t—11) +

+ 3
q>kr

dt f dt'e o (4.36)

=0

8s

or in (k,w)-space (leave out w’s for brevity):

Gt(ka, k1) = By, G5 (k1) + G§lk1) Viy 1, G k)
+q§ G;(kl) qu; Gf{ (Q) sz q Gg' (kz) +

+h§” G (k) Vig, G5(1) Wiy 1 GG (k) ++ 4.37)
where we have remembered to sum over all possible intermediate states,
q, I, ete., since, for example, the single diagram with g on it actually stands for
an infinite number of diagrams, each one with a different value of g. (The
notation g> kp is short for e,> ef, ete.)

[The time integrations in (4.36) are automatically restricted by the é-func-
tions found in Gt and G, Thus, in the third diagram in (4.34) since all lines
are particle propagators, we see that 7; <t <#'<¢;. In the fourth diagram,
since the /line is a hole propagator, # must be > ¢, and we find: if ; <t <,
then — oo <t’<¢, while if #, <7<, then —w <’ <¢,. (Strictly speaking, in
the Goldstone method, diagrams are ‘time-ordered’ (see §9.5) so that for
diagram (4), ¢, <¢’<t, #y <t<t,. There will be other diagrams like {4), but
with —w <t’<t, and/or ¢, <t <, which may be added to {4) to obtain the
stated region of integration.)

However, when the time integrations here are actually performed, one is
dismayed to discover the page jumping with exponentials oscillating at «
just as in (3.12). The remedy is to change the integration limits from + o to
+ (1 — in) where 7 is a positive infinitesimal like the & in (3.12°); it is such
that nx =00, The justification for these new limits lies in the rigorous
derivation of the propagator expansion (see Appendix B, especially (E.11)).
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One might imagine that these modified limits would cause trouble in
Fourier transforming from (4.36) to (4.37). That is, we would expect that the
limits + e were required in order to get the 8-functions, like 6(w—e’) in
(2.23). However, one finds that the sort of integral which arises, i.e., of form

T
J. drexp (idet),
n

where Ty= —o(l—in) and Ty=+ (1 ~#y), is also a legitimate S-function,
so this causes no difficulty.]

And now an easy example showing how to evaluate G* by partial summa-
tion. Suppose k;=ko=Fk (k>kg), and the potential is such that ¥, and
Vi (m<kp—remember this is short for ¢,,< €z) are large, and all the other
V’s are small. Then the propagator in (4.34) may be approximated by the
sum of the following diagrams:

k,w ~ H N\i T
(4.38)
. 1+\l" +\\i"+ ‘—1—
-
or 1
+ ——
T ) = 1G5 I = Vi Vg Gl )
1
_ ) (4.39)
. |Vkm|2
(w—ek+13)_m

This result is‘evidently not of the quasi particle form (3.16). However, by
(3.14), the poles of G* give the excited state energies of the perturbed system.
Thus, dropping the i8s (they have no significance in this simple calculation)
yields

2
w—ek—l-fiﬂel— =0 (4.40)
which gives i
P +
w=¢="% S 3 (e em)2 4 Vi)
B +
= e = ET g/ e+ 4| Vil D). 4.41)
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These reduce respectively to €, €, in the weak interaction case, when V,,—0,
and are also valid in the strong interaction case when ¥,,, is of the ordex of
or greater than the separation between the levels, e,— e, Note that it is
niecessary to go to infinite order to get (4.41), If we just go to any finite order,
the poles are still at the unperturbed energies, ¢, €,!

The result (4.41) will be recognized by experts as just the formula for the
new energies of a single particle two-level system placed in a perturbing field.
Of course, we could have predicted this result from the beginning since we’ve
really got a single particle system here, because by assumption the particles
don't interact with each other. Again, as mentioned in connection with the
quantum pinball game, this should not be regarded as a demonstration that
the ‘powerful® diagram technique merely provides a complicated method for
getting trivial results, but rather as a super-simple illustration of the general
principles.

In the next section we go on to the real many-body problem

4.5 Interacting Fermi system

Imagine now that we've got a genuine many-body system consisting of N
fermions interacting by means of two-body forces V' (Jr,—r)}), depending just
on the interparticle distance fr,—r;|. For simplicity, assume there are no
external fields, so that the single particle states are just ¢,= *exp(ik-r)
with €,=k2/2m as in (3.4) and (3.5). Our object is to construct diagram-
matically the perturbation expansion of the propagator for this system,
evaluate it by partial summation and examine the result for quasi particle
behaviour.

The first thing we need is the transition probability amplitude for a process
in which two particles, one in state ¢, the other in state ¢, collide with each
other and are scattered into states ¢y, ¢; respectively, Analogous to the
interaction amplitude ¥, in (4.33), this is just the matrix element

Vi = [ @5 [ 0 1O SHE) V(ir= N $ul) $16) = Viam: (442
As we saw in (1.8) in (r,?)-space, such an 1nteracuon may be represented
diagrammatically by a wiggly ]me
k 1

rennrnonll = (=1)4Vktm (4.43)

m 1]

where the left intersection or ‘ vertex’ shows the scattering of one particle from
m to k, and the right vertex shows the scattering of the other from n to L
(Note: the majority of writers draw the above inferaction with a dashed line:
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However, we shall always use the wiggle (4.43).) [The 4 comes from H; in
(4.28). It is eliminated by (4.60).] Using the particle~hole description, this
may be drawn in more detail, thus:

k 1 k m ! n
mWn LY v kw:‘ (4.44)

@ ®» ©

k

m

Diagram (@) just pictures ordinary scattering of two particles from states
m,n to kL In (b) a particle in ¢, collides with a particle below the Fermi
surface in state ¢,. It knocks the particle out of ¢,, thus creating 2 hole in ¢,
and a particle above the Fermi surface in state ¢;. At the same time the
original particle undergoes a transition to state ¢,. And so on. [Note that
the diagrams (4.44) correspond precisely to the interaction terms in the
Hamiltonian for this case, (4.28).]

M- It is extremely important to note the labelling convention used in
Viwmn: k=line out of left vertex, I=1ine out of right vertex, m=line into left
vertex, n=line into right vertex. A mnemonic aid is to remember the tango
dance step: left out, right out, left in, right in. :

The interaction V(|r—r’|) conserves linear and spin momentum since it
depends only on |r—x’|, therefore cannot move the centre of mass of the two
colliding partlcles or flip their spins. Thus

k+1 = m+n; crk+0', = Gyt Ty o {445)

If the arrows in (4.44) are interpreted as giving the direction of ‘momentum
flow’, then (4.45) shows that the momentum flowing into the interaction
equals the momentum flow out. It is convenient to incorporate this into the
labelling as follows:

-m—gq n+q

m q n

I

—ix4Vo g nta, mn
= ~ix{V, (4.46).

where the form V, is justified in (7.70). (Observe that the momentum transfer,
q, in (4.46) is defined as momentum into left vertex minus momentum out of
left vertex. That is, for matrix element Vi, the momentum transfer is
¢=m—k (=I—nbymomentum conservation). The element V,,,,,, correspond-
ing to diagram (4.43) twisted through 180°, has momentum transfer
q'=n—l=—q. Hence, since by (4.42) Vipn=Vitnm We have V,=V.,.) Al
this implies that no matter how complicated the chain of collision processes is,
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the momentum at the beginning of the chain is equal to the momentum at the
end. This can be seen, for instance, in the second-order diagram:

2 k q
"
k~-q m‘ I (4.47)
t
n Kt 4

This is analogous to the flow of current in a network without sources or sinks,
so that the flow of current into the network=current out. Hence it is only
necessary to deal with propagators G(k,1, f,—¢;) such that k=1,

It is important to note here that although the collisions conserve momentum,
they do not conserve energy. For example, at the lower interaction of (4.47)
we see that the energy flow into the interaction (in units of 4%/2m) is k2 +12,
while the energy flow out is (k —g)*+ (/+¢)>. Hence we are dealing here with
virtual scattering processes, not real ones.

We may now construct the perturbation series for the single-particle
propagator, G*, as the sum of all possible different diagrams which can be
built up out of sequences of interactions (4.43), connected by particle and
hole lines, with a particle entering the system in state k and leaving in k.
One such sequence is just that in (4.47). It depicts a particle in k being scattered
into k—q and simultaneously knocking a particle out of 1 into 14-q (i.e.,
creating a particle in 14+q and a hole in I). At later time ¢/, the particle in
k —q knocks the particle in 14+ q back into the hole state F (thus annihilating
the particle-hole pair) and is itself scattered into state k. This is a second-
order process, because it involves two interactions.

There are also several first-order sequences which can occur. Although
these are simpler than (4.47) because they involve only one interaction, they
are more difficult to interpret physically. Let us see what first-order processes
can be constructed using the interaction in (4.44). Since one particle enters
in k and one leaves in k, by conservation of momentum the only possibilities
are

K 1k o1 kK 1 K
k: :1 k: il 1: :k 1: :k
3] 2) (3) C))

K 1, k k 1 k1
11;: ;21 K 1:: :ik s @49

® (6 0 ®
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Such diagrams as

k k1
le’ kw ,  etc. (4.49)

are not allowed since they have a particle and a hole in the same state, 1, which
is impossible—by definition, particles exist only above kr and holes only
below. It can also be shown that diagrams (1), (3), (5) and (7) above do not
occur. [The argument for this requires use of the interaction Hamiltonian,
Hy, asin (4.28). The term in H; corresponding to diagram (1) is

Vi dhalaga;. (4.50)
When this acts on the state with one incoming particle in ¢, we find
Vimidlalaza, |1 = 0 (4.51)

by (4.20). Diagrams (3), (5) and (7) are similarly eliminated. Note that the
term in Hy corresponding to diagram (2), for exampie, is

Vi bral ap bh (4.52)
which gives, by (4.20):

Virbral a0} |15 = Vit |18 # 0. (4.53)

(Note: Let us not make the mistake of thinking that in diagrams (1)-(4) in
(4.48), ‘nothing has happened’ just because the particles and holes emerge
in exactly the same momentum state in which they entered. This would only
be true if we were dealing with classical particles. In the present quantum
case something has indeed happened, i.e., two particles in states kI enter and
interact with each other, but instead of being scattered into new states different
from ki, they are simply scattered into the same states, k,1, This is the same
as what occurred in the quantum pinball game, where the potential Vi,
scattered the particle from the state k into the same state k.)

The possible first-order processes may then be drawn using (4.48)—(2), (4),
(6) and (8). This can be done in only one way, e.g., by in each case attaching
the outgoing 1 line to the incoming one (otherwise we would have a particle
and a hole entering and leaving the diagram, which would violate the definition
of the single-particie propagator, or we would have to introduce more inter-
action lines, making it a higher-order process). Thus we find:

. k 1 1 k
X 1 \ K t (4.54)

(@ Bubble diagrams {b)
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W ) Pl e

© Open oyster diagrams . (7))
(closed oyster appears in (0.23))

The bubble processes can be physically interpreted as follows: a particle
enters in k, knocks a particle out of state 1 (|Ij < k) at time #, then knocks the
particle instantaneously back into 1 at time #, then continues freely in state k.
Thus the hole which is created in 1 lasts only zero seconds, and there is no
accompanying particle. Of course it is impossible to draw instantaneous
processes like this, and the bubble picture is purely schematic. This process
is also called ‘forward scattering’, since the particle emerges in the same
direction (i.e., momentum state) as it entered. (Note again that by the argu-
ment after (4.53), something has really ‘happened’ in these forward scattering
processesl)

This bubble process undoubtedly sounds so bizarre that it may seem far-
fetched to consider it physical. The fact is that, while in the classical pinball
case, each diagram described a real physical process, the quantum diagrams
describe only what might be called ‘quasi-physical® processes. This will be
discussed further in the next section, §4.6. At the end of Appendix G, it is
proved rigorously that the bubble is a legitimate diagram,

The open-oyster processes are just like the bubbles, except that a quick-
change act occurs in which at time ¢ the incoming particle simultaneously
(a) strikes the particle in I, () creates an instantaneous hole in I and (c) is
exchanged for the particle in 1. Diagrams (4.55) are often called ‘first-order
exchange diagrams’, and the process is referred to as an ‘ exchange scattering’.
The instantaneous hole lines in the bubble and open oyster are called °non-
propagating”’ lines.

Note that the situation shown in (4.54, 55) is general, i.e., whenever the
interaction (4.43) occurs in a diagram, there is also another diagram possible
in which the two outgoing (or incoming) particles have exchanged momentum.
This is usually drawn thus:

For example, diagram (5) in (4.63) is the exchange of diagram {4).
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Let us see how one evaluates these diagrams. Consider first the bubbles.
Using dictionary Table 4.2 and (4.43):

tz | ' o : R
t'k L= (-,3 [ any, e~ [ -3 Vi x
k
! X 16304 1)1 % 16§, 1= 1), (456

where we have integrated over the ‘intermediate’ time, ¢, and summed over
the ‘intermediate’ momentum, 1, as in (4.36). (The extra factor of (—1) in
front comes from the fact that the diagram contains one ‘fermion loop’,
namely Q. [A fermion loop is any set of directed lines, in a diagram,
which can be traversed in the direction of the arrow, returning to the start-
ing point without lifting pencil from the paper. For example, the 1, 14 q lines
in (4.47) form a fermion loop.] This is one of the annoying ‘phase factors’
which comes out of the rigorous mathematical development of the theory
(sec end of Appendix G).) Note that an additional factor of (— 1) appears
because the propagator line for the bubble is:

Gy, t—1t) = ixielax0 = —|, 4.57)

The Fourier transform of (4.56) may be taken just as was done m the
pinball case {2,23), This yields

ko I i
’ = (=DEGHK P S | =iV =1,  @ss
k,w JVWV\O (1} ’<Zk’ [ 3 kl’kl]( ) ( )

The (—1) after Vy comes from (4.57) and is the value of the ‘non-propa-
gating’ bubble line in (k, w)-space as well as (k, f)-space. Note that we cannot
get (4.58) just by using the (k, w) side of dictionary Table 4.2! This i is because
the bubble (and open oyster) diagrams are special cases.

It should be remarked here that if spin is included, then k is short for k, ¢
where o is the spin quantum number (see p. 106), and 1=1,0’. For a spin-
independent interaction, (7.70) holds, and the sum over o’ then produces a
factor 2 which multiplies (4.58).

In a similar fashion, the reversed bubble gives

N K, o = (— DGk, w)]* Z (*'I') Viu(— 1), (4.59)
k,w {<kr 2/ |
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But by (4.42), Vis= Vs so these two diagrams are equal. This is guite
general and we may write:

If we are given a diagram, and form a new diagram from it by
twisting one or more of its interaction wiggles through 180 degrees,
then the new diagram has the same value as the original one.
Hence all twisted diagrams may be omitted if we just multiply
{4.43) by a factor of 2.

Thus, for instance, of the diagrams

(4.60)

it is only necessary to keep the first.
In a manner similar to (4.59), the open oyster gives

FJ 5 Gk, ) % (=) Vi (= 1) (4.62)
k’ w l I<kr

The factor of 2 recommended in (4.60) has been included. If spinis included, so
k=k, o, and I=1,0’, then for a spin-independent interaction like (7.70), we
find that o’ =o. Hence there is no factor 2 from a spin sum, in contrast to the
case of the bubble (4.58).

Observe that the freguency (or ‘energy parameter’), w, associated with the
propagator line coming out of the interaction in (4.59, 62) is the same as that
entering. This is a special case illustrating the general rule called ‘ conservation
of frequency’. It is the same thing we saw in the pinbali model (2.23), (2.25),
and results from the fact that the Hamiltonian is time-independent, so the
propagators depend only on time differences. This gives rise to 8-functions
similar to the 2#8(w’ —w) in (2.23). Conservation of frequency may be
incorporated into the labelling of diagrams in k,w-space, as shown in (4.62")

Kewiqe

w—€ ‘ ﬁ+‘:el

k,w q,¢

(4.62)

All momenta and frequencies in this diagram, aside from those entering
and leaving, are called ‘intermediate’. Thus gl and B,¢ are the intermediate
momentum and frequencies. Note that it is convenient to associatea frequency
with the wiggly line, even though the interaction itself is independent of .

(4.61) .
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= Do not make the mistake of confusing the frequency of a line with
the particle energy! For example, in the line k,w the frequency is w while the
particle energy is e =k*2m. Also, the frequency is conserved while the
particle energy is not.

Now we can collect the information in Table 4.2, equations (4.43, 57, 60)
to produce an unabridged dictionary for the interacting many-body fermion
system. This is shown in Table 4.3. The whole series for G* is then just the
sum of all possible diagrams such as (4.47, 54), etc. Chapter 9 will show how
to draw all the possibilities systematically, but here we will simply draw a few
representative diagrams, written in (k, w)-space for simplicity:

o s @ + g :

Y @ ® @ &)

©®

Such diagrams are often called *self-energy diagrams’ since they show the
particle interacting with the many-body medium, which in turn acts back on
the particle, altering its energy (see just after (0.5)). It should be noted that
many writers draw these diagrams lying down, thus:

#=*+i+—»§*+ﬁk+""
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The diagrams may also be interpreied physically from another point of
3 & - A :, view. Look at the diagrams in (k, r)-space at a particular time #,:
3 A Y (8 8 :
= i 3 3 = o
A el N g 0% 0’"11-:0
—— .8 _
IREH £ g e e
% : - O g E‘ 4 - = 1 + + + + + A' *
3 ==+ 50778 3].1 Z,,) A —)
< |8 : o N N S A VA
3| & (4.64)
‘é 2 -;? a b ¢ d e
53 ® @ V. 4
'E. & 'T‘ T E _"_\_ ;‘"" .
g - - f’“ - f‘ w 2 T At t, we see that besides the bare particle, there may exist in the many-body
'5 8 3 3 Tl - system two *virtual’ particles pius one hole created by second-order process d,
g & I i g 0o I 8 31k or two particles and a hole created by second-order sequence e, and so on, with
= ) ) €} ) G 5 $18 the particle plus three particle-hole pairs created during the eighth-order
; ES ol o) of 2‘ ° é N = poodle process illustrating a typical higher-order case. That is, the diagrams
{ § % 53 g | 27 & T Ll show all the particles and holes which may be kicked up by the bare particle as
2 it churns through the Fermi sea. Now, since the propagator given by (4.64)
E . - ® - describes quasi particles (as will be proved in chapter 11) it follows that the
E = & = diagrams reveal the content of the cloud of particles and holes surrounding the
b = | ).-‘ S 3 . i el . .
& 5 o = | bare particle and converting it into a quasi particle.
R Rl By g % ' 3) may be translated into functions by Table 4.3, givi
g @ = | = 5 E - 2 Equation (4.63) may be translated into functions by Table 4.3, giving
S le = Y 8
Ky R il O |5 £« g GHk, ) = GEk, ) +(~ DGk, @) & Vil =1+ .
g e S g g = p<kr
5 g F -7 & |
_E ~ + Gg_(ks w)z Z Vkmmk(— l) e (4'65)
~ makr
|8
o & a %
§ < - 1 By & 4.6 The ‘quasi-physical’ nature of Feynman diagrams
B § & ,% :l-‘: = A In the classical pinball game, each individual dlagram in the perturbatlon
N - 3 % ! expansion of the propagator described a real physical process. Using ‘ physical
| § = % qs-'.- N = — intvition’ based on the analogy to the classical case, we developed the diagram-
! g 2 2 <& i w01 4oy matic perturbation expansion for the quantum propagator in a one-particle
? Q $ ! I g = ! N system (3.32), and in non-interacting and interacting many-particle systems,
i = e = Eﬂ T T 5 (4.34) and (4.63). Our intuitive methods are, in fact, similar to those used by
g 2 Lo L N L8 “ i 5 Feynman when he first introduced diagrams into quantum electrodynamics
| < S: ‘g é 3 &, ié 5 gg 3 — (Feynman (1962), p. 167 ff.).
e G is g = 2 ne . -However, by now the reader is doubtless aware that Feynman diagrams
= = = Z ~ | a describe processes which are considerably less ‘real® than those described by
the classical pinball diagrams. For example, in the case of a single particle in
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an external potential, it was difficult to see how a particle could be scattered
several times by a potential, despite the fact that it was in the potential the
whole time. Later on, in the non-interacting fermion system, graphs appeared
which violated the Pauli exclusion principle. And then, in the interacting case,
we met the simple bubbles which seemed to elude any common-sense physical
interpretation. Finally, we found that higher-order diagrams involved
‘virtual’, rather than real, processes.

Nevertheless, the situation is not as bad as it might seem at first sight.
For, although the individual diagrams in quantum propagator expansions
have unphysical properties, the sum as a whole does not. In fact, the full
propagator, G*, describes an actual physical experiment—for instance, the
elastic scattering of a single nucleon by a nucleus in its ground state (Thouless
(1961), p. 69). This means that the unphysical aspects arise because of the
manner in which we have decomposed the propagator into a perturbation
series. This is roughly analogous to breaking a sentence up into words: the
individual words, even though they are meaningful, are not thoughts in
themselves. It is only when they are put together to form the sentence that a
thought emerges.

Because of the unphysical properties of Feynman diagrams, many writers
do not give them any physical interpretation at all, but simply regard them as
a mnemonic device for writing down any term in the perturbation expansion.
However, the diagrams are so vividly ‘physical-looking’, that it seems a bit
extreme to completely reject any sort of physical interpretation whatsoever.
As Kaempffer (1965, p. 209) points out, one has to go back in the history of
physics to Faraday’s ‘lines of force’ if one wants to find a mnemonic device
which matches Feynman’s graphs in intuitive appeal. Therefore, we shall here
adopt a compromise attitude, i.e., we will ‘talk about’ the diagrams as if they
were physical, but remember that in reality they are only ¢ apparently physical’
or ‘quasi-physical’.

There is still an important question left: the quantum propagator diagrams
describe only quasi-physical processes, whereas the classical pinball diagrams
describe real physical processes. How, then, can we justify obtaining the
quantum series by analogy to the classical case? Evidently, the only satis-
factory answer to this question would be to derive the diagram expansion
directly from the Schrodinger equation. This was done at the end of chapter
3 in the single-particle case. It can also be done in the many-body case, but
unfortunately the argument there is so long and labyrinthine that the average
non-specialist tends to get completely lost in it. It is for this reason that we
prefer to use the intuitive approach in the body of the text, and have postponed
the rigorous derivation to the appendix. However, for those who feel ex-
tremely uncomfortable with intuitive arguments, we offer the following
alternative:

[
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IMPORTANT
Those readers who wish to see the rigorous derivation of the many-body

diagrams before going any further, should leave the direct path through the
book, and instead propagate along the following detour:

§4.6-»—<chapter 7 (second quantization)—+—§9.1, 9.2 (mathematical definition
of .propagatO}')—>—Appendices B through G (derivation of diagrams, Note;
skip Appendix C, and all sections referring to ‘vacuum amplitude’ or ‘finite
temperature)——=4.7->—etc.—>—

All others should go on from here directly to §4.7.

4.7 Hartree and Hartree-Fock quasi particles

We will now consider the simplest of all partial sum approximations for the
propagator, i.e., the Hartree and the Hartree-Fock. Imagine we have a
hypothetical system with no external potential and with an interaction between
particles which is dominated by forward-scattering processes (i.e., both
particles emerge from the interaction with the same momentum they had
when they entered). We ask for the energy dispersion iaw of the elementary
excitations (quasi particles) in this case. The procedure will be to calculate
the propagator approximately by picking out the most important set of
diagrams in (4.63) for this system, and sum over this set to infinite order.

Let us first write down the interaction, V., in (4.43, 44). This will be
dominated by a large forward-scattering term, so we have

Vk!mn = Smk sn! Vit Wklmu (m #kn# l) (4-66)
e

large  small
Thus the most important interaction diagrams are the forward-scattering ones
shown in (4.48 (1), ..., (4)). The diagrams which will dominate the series
(4.63) will therefore be just those in which every interaction is of the forward-
scattering type. A few trials reveal that the only diagrams of this sort are

k . v [0
k\+k%o]+k 1+ Ot
k e
= ~><[1+|xm~0+rx(~v{))2+---]

] + R N
1= ()

Fd

T Tr o0 4.67)
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those containing just bubbles, so that the propagator may be approximated
by a partial summation over repeated bubbles (see (4.67)).
Using Table 4.3 and substituting for the propagators, this becomes

. _ 1
Sl e o 3 WD (4.68)
o 1
or Gk, w) = ” (4.69)

- % Vigtid
I<ky

Comparing with (3.16) reveals that we have here a live many-body quasi
particle with energy dispersion law and lifetime:

&=+ X Vigs me=18=w, (4.70)
I<kr

The quantity ¥ Vi is the *self-energy’ of the particle as described just
I<kr

after (0.5). If spin is included (see after (4.58)) there is a factor 2 multiplying
Vi

This result has a simple physical meaning. First we note that (4.67) has
exactly the same form as the diagram series (3. 33) for a single particle moving
through an external potential, with

) = (1) T (=D V(-1
I<ks

playing the same role as

Thus, (4.71) can be interpreted as a transition probability for ¢, — &
scattering caused by an ‘effective external potential’, v.y. We can find vg
by writing out (4.71) in detail, using (4.42):

4.1

— iV e (4.72)

3 V= [Pl 3 [ b@rvenarao. em

Vel

Comparing with (4.33) shows that the quantity in brackets is just v.z. Since
|¢,(r")|2 is the density at point 1’ of a particle in ¢;, v is evidently the average
potential at point r due to all the particles in the Fermi sea. (In the present
case, since the ¢, are plane waves, v g is independent of r.)

We now recall that for the quantum pinball propagator, the quasi particle
energy (3.38) could be obtained both by the diagram method and directly

1

X
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from the Schridinger equation using Hamiltonian (3.20). In the present
case, it’s easy to write a Schridinger equation with energy eigenvalues e, by
just using v as external potential:

P ,
(24 0@ ut0) = it

It is easily checked that this is correct by multiplying both sides by ¢%(r) and
integrating—the result is just (4.70).

In our intuitive argument for (4.74), the ¢, were given (plane waves).
However, if we regard them as eigenfunctions to be solved for, then (4.74) is
just the famous Hartree equation. Remember that by (4.73), v.g is a function
of all the ¢’s. This means that we must calculate ¢, self-consistently, i.c.,
put an assumed ¢, in v, find a new ¢, from (4.74), put the new ¢, in vey,
calculate a newer ¢, etc,, until ¢, stops changing appreciably. In the present
case with no external potential, we find immediately that the correct ¢, is
just a plane wave. However, in a system with an external potential, like an
atom, or a molecule the whole self-consistent procedure must be carried out.
In such cases, the ¢, may correspond to atomic or molecular orbitals, and ¥
may be interpreted as scattering between orbitals. (See §11.1 for further
discussion.)

From here, it is only a baby step away to the quasi particle in Hartree-Fock
(HF) approximation. Imagine that exchange scattering is just as important
as forward scattering in our hypothetical system, i.e., that

(4.74)

Viimn = Sut Ont Victki+ 8pnt One Vi + small terms, 4.75)

Then the open oysters must also. be included in the approximation for the
propagator, and the partial sum carried out as in (3.39):

e ﬁ‘? ) ﬁ B Jﬁ
Fj
- x:l-i- x @-:- x x@x‘w"‘o+
- ;x;1+ x(~wO+@)+*x(fm{j+@)z+m]
- - — ' . (4.76)
fr (-0 v ) [ - (0 c)
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Translating by means of dictionary Table 4.3 yields
1
—ex— 2 (Vir— Vigar) 10
I<ky

Gk, w) = " 4.7

(If spin is included, multiply Vy, by 2.) This also has quasi particle form with

& = et 5 Viarr— Vinwr)
I<kp
T = @, (4.78)

This is the quasi particle energy and lifetime in HF approximation. The
¥yt is the well-known ‘exchange term’. Analogous to what was done in the
Hartree case, we can here construct a Schrisdinger equation including the
effective external ‘exchange’ potential; this turns out to be the Hartree-Fock
equation. (Note that plane waves are the self-consistent solution of the HF
equation in the present case with no real external potential, just as with the
Hartree equation (4.74).) It should be mentioned that the lifetime here is
infinite because of the crudeness of the HF approximation, Better approxi-
mations, which include sums over diagrams like (4.47), produce finite lifetimes.

4,8 Hartree-Fock quasi particles in nuclear matter

Real-life physical systems have interactions considerably more compli-
cated than the hypothetical ‘forward plus exchange scattering’ model in the
previous section. Nevertheless, the HF can be used as a very crude *first
approximation’ to the propagator, as we show now for the case of nuclear
matter,

Nuclear matter is #ot matter in a nucieus! It is a hypothetical stuff con-
cocted in the following way (see Thouless (1961), p. 20, for details): On the
basis of the ‘liquid drop’ model of the nucleus, Weizsicker constructed the
famous “semi-empirical mass formula’ for nuclear binding energy:

E(N,Z) = ~a1 A+¢3_2£+laazz A +da (N-Z)A (4.79)

nuclear surface Coulomb Pauli principle
forces correction forces correction

where N and Z =number of neutrons and protons respectively, A=N-Z and
the a;’s are constants determined by fitting (4.79) to known nuclear masses.
In the first term, —a, is the binding energy of a single nucleon, well inside the
nucleus (i.e., not near the surface), due to the attractive nuclear forces—it is
about —150 MeV. The second, third and fourth terms are respectively
corrections due to the presence of the nuclear surface, Coulomb forces
between protons, and the effect of the exclusion principle.

If there were no Coulomb forces, and if the number of nucleons was so
large that the nucleus was the size of, say, a coconut (making the surface term
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negligible in comparison with the first term) and if N=Z, then we would
have a simple system with binding energy proportional to the number of
nucleons, A. This hypothetical system consisting of a huge number of protons
and an equal number of neutrons interacting by purely nuclear forces (no
Coulomb forces) is called nuclear matter. It is of great interest because a
calculation of the binding energy of nuclear matter, using some model of the
nuclear force, is evidently a calculation of —a;, and can be compared with
the experimental value of — 159 MeV.

We will assume that the nuclear interaction has the form of a simple

‘Yukawa potential (¥, <0)
glr—rlia

V =+ aVo'Tl'.—_'_-r‘;I'"° (4.80)
(Such a purely attractive interaction is clearly science-fiction, since it would
cause the nuclear matter to collapse to a point. This can be prevented by
adding a ‘hard core’ to the potential, as described in §12.4.) The quantity
a (~ 10713 cm) is called the ‘range’ of the interaction, since the exponential
becomes very small for [r—r'| >a.

The quasi particle energy in HF approximation may be calculated using
(4.78, 80) (Brown (1972}). Noting that the density of points in k-space is
Q/(2m)3, where £ is the normalization volume, (see after (3.64)), we may con-
vert from a sum to an integral using ’

zoof 2
) 3’ (4.81)
so that (multiply ¥, by 2 if spin is included)
., K2 d?l
&% = ﬁ'l' o J‘ @“r)—;(Vm:— Vs (4.82)

N<kr

The transition matrix element V., is (using (3.5), (4.42, 45, 80))

— i
Vit = + _V_:D_ f f A3rd3y -G rHlr'-mir-n-r) gl
& r—ra

_ 1 4n¥Vod® 8its, mn _ 1 Vo 8iit min
2 [+E&-m2a?] 2 [1+E2+m2—2kmcos 0)a?]

where & is the angle between k and m and we have used that 23>4° Hence

(4.83)

4'JTVO a 1

]

4nVya®
S | 0 :
wd = + [1+ (/2 +k%—2kicos B) a?]

Vit = +

(4.84)
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Substituting these expressions in (4.82), we find that the ¥}, integral is
trivial and vields 2V a® k2/3m. The V), integral is first integrated over ¢ and 6,
which vields terms involving (k+ )a and (k—a. The remaining Mintegration
is easily carried out with the aid of the substitutions y=(k+/)a,and z=(k — l) a,

and we obtain for the quasi particle energy
k2 2V,adPki

€ m—

o ——7-‘:_[F(ka+k,—a)—~F(kﬂ"'kra)]=‘ (4.85)

where
F(z)= 2—;; [14+22[ln (1 +25)—1]—[zIn(l +22)—2z+2tan"'z] (4.86)

This expression can be evaluated to find the effective mass in the limit when
ka and kra are both <1, so that z<€1. In order to get a non-vanishing
contribution from [F(ka+ kpa)— F(ka—kpa)), it is necessary to expand the
logarithm and tan=* functions up through order z°. Keeping only terms up
through order k* we find:

, 2Woat ki 1 2V,a°k} 2
€ & —_571'—+ Cy —5;-"""1(, (4.87)
from which we see that the effective mass is
m
*_
T T imV,ak3 (4.88)
14 ——=.
3

4.9 Quasi particles in the electron gas, and the random phase approximation

A real metal consists of ~ 1023 positively charged ions arranged in the form
of a regular lattice, with ~ 10%* electrons moving more or less freely among
these ions. The ions execute oscillations about their equilibrium positions
(‘lattice vibrations’). Such a complicated system poses a nasty problem for
the many-body physicist. To make life easier, he often postulates a utopian
metal in which the ions are motionless, and the positive ion charge is smeared
out to form a fixed uniform positive background against which the electrons
move. The electrons are assumed to interact by purely Coulomb forces.
This theoretician’s pipe dream is called the ‘electron gas’. (See Fig. 0.7).

Let us first examine the electron gas in the HF approximation. The
Coulomb interaction and its transition matrix element are just the Yukawa
interaction (4.80) (with ¥,>0) and its matrix element (4.83) with Voa=¢,
a —» o, Le.:

e? 4me?

(b) Vitmn = ']'i‘_'—n'-l'l‘z’ (4.89)

e—rj’

(a) Vrr) =
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where spins are left out for simplicity, and we take £2=1 cm®. That is, the
Coulomb interaction has the form of a Yukawainteraction with ‘infinite range .
Alternatively, one often says that the Yukawa potential has the form of a
‘shielded’ Coulomb potential, the exp(—r/a) in (4.80) being the ‘shielding
factor’. Note also that (4.89) becomes infinite for k=m whereas (4.83)
remaing finite.

The quasi particle energy may be evaluated in exactly the same way as for
the nuclear matter case. There is a slight simplification because of the fact
that the bubble term in (4.76) is cancelled by the peositive charge background
(see §10.4), so that

1
(4.90)

Y

The expression for the quasi particle energy turns out to be (take limit of
(4.85), (4.86) when Vya=¢? and ¢ — ):

’ kz‘ esz (k}.‘—kz)
= o En [2+ Ky

# HF (electron gas) "-'

k4-kr
l?[k—kf

] . (4.91)

We are mainly interested in quasi particles near kg, since it is primarily
these which take part in physical processes. For |k| near kg, the effective
mass may be found by expanding e about kz:

€ = €, + (%)kr (k—~kp)+++-, (4.92)
where k= |k|.
For the non-interacting system
k2
€ = fm—+—(k ke)+-- (4.93)

Comparing (4.92) and (4.93), we may regard the effective mass as given by

ke _ (Oe de;,
= (5), o m=nf), (59
For ¢ as in (4.91) we obtain
m'ﬁF (slectron gas) = 0! 4.95)

This is of course an absurd result, and it disagrees with experiments, all of
which show m* to be of the same order of magnitude as .
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The reason why the Coulomb interaction produces zero effective mass at
the Fermi surface, whereas the Yukawa interaction does not, can be traced
back to the fact that the Coulomb interaction is infinite for zero momentum
transfer, as was pointed out after (4.89). The HF approximation is not
adequate to handle such singular interactions.

The physical reason for the inadequacy of HF lies in the fact that it treats
the effect of all the other particles on the test particle by means of a time-
independent average potential. But we know from §0.2 that the quasi particle
is a bare particle plus a cloud which in a sense ‘follows* the bare particle. The
HF approximation thus gives us what might be called the ‘static’ part of this
cloud, but misses out on the ‘moving’ part.

The usual way of putting this is to say that the HF neglects ‘correlations’,
which means that it neglects that movement of the other particles which ‘is
correlated with’ (i.e., ‘follows®) the movement of the bare particle. As men-
tioned in §0.2, we would expect that these correlations would have the effect
of “shielding’ the interaction between particles, making it much weaker, The
diagram method which we discuss now (very briefly) gives us the way to
calculate this shielding effect. (It should be observed that although we consider
only the electron gas here, this is the same sort of problem one has to deal with
when trying to improve on HF calculations of atoms and molecules.)

How is it possible to take account of correlations diagrammatically?
Evidently the correlation effects must lie in those diagrams which were omitted
in the HF approximation. Of course it is impossible to take account of all
the omitted diagrams, but we can at least sum over the most important ones.

It turns out (as will be shown in §10.4) that in the limit of a high density
electron gas, the most important diagrams are those occurring in the following
approximation for G:

~ +FJ+‘:@+ + oo

1 )

D

+ + + e+ Foee,
D

(4.96)
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These diagrams may be summed to infinity and it is found that (see chapter 10)

» = rl—_l—é , (4.97)

where . (the self energy) is given by

The diagrams in '(4.98) are called ‘ring’ diagrams because of their ring-like
structure. For historical reasons, this approximation for G is called the
‘Random Phase Approximation’ or ‘RPA’.

In order to interpret (4.98), we twist the top interaction wiggle in each

diagram through 180° (this has no effect on the value—see (4.61)), and factor
out a free propagator: '

J

The series in brackets (4.99)
f = heend 4 Mg‘“‘l + +
(@) ®) ()
+ +oee (4.100)

@
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is called the ‘effective interaction’. The reason for this is as follows: Diagram
(a) shows the direct or ‘bare’ interaction between two particles. Diagram (b)
shows the first particle creating a particle-hole pair in the system, and the
second particle interacting with this pair. There is thus an indirect or
‘effective’ interaction between two particles via the many-body system. The
higher order diagrams describe interactions which are more and more indirect.
We may thus write 3 in terms of the effective interaction:

®= ﬁ (4.101)

which shows an electron interacting with itself via the effective interaction.
We may obtain further insight into the nature of the effective interaction
by carrying out the sum (4.99). In the limit when w=0 and g is smail, this
yields (see chapter 10):
4 e?
q2+A2

This has the same form as (4.83), so that, assuming it is true for all g, it must
correspond to an effective interaction having the same r-dependence as the
Yukawa potential in (4.80):

Ven(g) = (4.102)

—Ar
Voe(r) = 4«e25-r—. (4.103)

In contrast to the Coulomb interaction, which is ‘long range’, dropping off
as 1/r, this drops off exponentially for r>A™! so it has only a short range
~X1cm. Itis referred to as a “shielded’ or ‘screened’ interaction.

Such a screened interaction is just what we would expect physically on the
basis of the argument in §0.2, The real electron repels other electrons from it;
this exposes the positive charge background so that the electron is effectively
“followed’ by a positive charge cloud of width A=1, This turns it into a quasi
electron because the positive cloud “screens’ the electron’s own charge, thus
drastically reducing its interaction with the other particles of the system at
distances greater than A%,

Since (4.101) with Vg as in (4.102) has the same form as the HF self-energy
in (4.90), the quasi particle energy is easily calculated by placing ¥, g(k—1I) into
(4.82), with the ¥y, term equal to zero:

gk A1 4ne?
kT 2m R k-7 + W]
M<kr

(4.104)
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The calculation of the effective mass then goes just as for the Yukawa poten-
tial. In the simple case of large A (i.e., kpA~1<€1, & condition which is not
actually satisfied in the electron gas), it is found that parallel to (4.88),

m* = ___..._......m (4 105)
I 16mme? )
N

which is evidently finite. Thus the inclusion of the correlation (screening)
effects represented by the ring diagrams has produced a physically reasonable
result. (The result for m* in RPA when w#0 and q is not small appears
in §10.4.) :

Exercises

4.1 In a system of free particles, a hole is created in the single-particle state
Pu(t) =£2""12¢™*, What is the momentum of the hole?
4.2 For the five-particie system in Fig. 4.1:

(@) Evalvate ¢ el eyl e3[11111000...3.
(6) Write [1101100100...» in particle-hole notation.
(9 Find 3, e cf e,[1111100....

4.3 Suppose we have a non-interacting system with external perturbing potential
such that Vi, I_/,,.,‘, Vit, Ve (Im<kp, I> kg, k>ky) are large, and all other
V’s are small. Find G*(k,=k, ka=k, w).

4.4 Show that. for a system of fermions with a momentum-conserving interaction,
the following diagrams are not allowed :

~O

4.5 Consider c!iagram 5 on the right-hand side of (4.63).
(a) Label it, showing momentum conservation explicitly in the labelling.
(b) Show that the scattering processes at each interaction are virtual.
4.6 Translate (4.62') into functions. What variables does it depend on?



100 A GUIDE TO FEYNMAN DIAGRAMS [4.9
4.7 Show that:

kw4t

4.8 Suppose we have a hypothetical system in which the most important scattering
processes are the forward and exchange scattering of (4.58), (4.62) and the
double scattering in (4.62"). Find an approximate expression for the propagator
by partial summation. Do not attempt to evaluate the integrals!

4.9 Verify in detail equations (4.83) through (4.88).

4.10 Verify (4.91).

4.11 We have a system of N non-interacting Fermi particles. (a) They are acted upon
by an external perturbing potential such that V=4 for all k, I. Find the
propagator G*(q, p, @), p> k&, 9> kr, by summing exactly over all diagrams.
(5) Generalize your result to the case where Vi has the form: Vu=4Aff
(factorizable potential).

Chapter 5

Ground State Energy and the Vacuum Amplitude
or ‘No-particle Propagator’

5.1 Meaning of the vacuum amplitude

One of the first many-body problems to be tackied by the field theoretical
diagram techniques was that of finding the ground state energy, E,, of a
system of interacting fermions. This quantity is directly related to experi-
mentally measured properties—such as for example the cohesive energy in a
metal or the binding energy in nuclear matter. Calculating it theoretically is
a tough job. The interactions are large and hard to handle, and naive
approaches simply drown one in a deluge of infinities, Thus in the nuclear
case, because of the hard core interaction, one gets Vj;,,=c making the
interaction Hamiltonian infinite. The electron gas is equally psychotic, yield-
ing oo for every order of perturbation theory higher than first,

The diagrammatic methods to be discussed in this chapter provide a neat
way of handling such delinquents as the above nuclear and electron inter-
actions. In both cases, we can perform a partial sum over an infinite series
of infinite terms and get a finite result! In order to do this, it is necessary to
have a general way of writing down the ath-order term in the ordinary per-
turbation series for Ey, i.e., in

B[ Hy[D,> <P, | Hy| &
Ey = W0+<¢01H1|‘po>+ z < DI l[WD>_<W ] ll 0>+,.. (5.1)
my0 m

where Wy, W, are the ground and excited state energies of the unperturbed
Hamiltonian, and P, D,, are the corresponding wave functions. The general
term is hard to obtain from the time-independent theory usually used to get
(5.1). However, there is a time-dependent technique which gives a pictorial
recipe for finding the desired nth-order term; this is the method of the
vacuum amplitude expansion,

The vacuum amplitude, R(t), is defined as follows: Let @, be the ground
state of the unperturbed system as defined in (4.12) (i.e., &, is the ‘Fermi
vacuum’), Then R(¢) is the probability amplitude that if the system is in @
at time 0, and the external potential and/or interactions between particles are
allowed to act, then the system will be in @, at time 2. That is, R(¢) is the
‘Fermi vacuum to Fermi vacuum transition amplitude’.
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