2016 年ノーベル物理学賞解説セミナー Kosterlitz-Thouless 転移と Haldane 予想

野村 清英

Dept. of Phys., Kyushu Univ.

2016年11月29日

2016 年度ノーベル物理学賞受賞者

Figure: 左 D.J.Thouless; 中 F. D.M.Haldane; 右 J.M.Kosterlitz

"TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER"

序論

相転移:(オーソドックスな理解)

- ▶ 秩序パラメーターが重要
- ▶ 低温では長距離秩序(自発的対称性の破れ),高温で秩序なし.
- ▶ ユニバーサリティ
- 相転移には境界条件は重要では無い.

境界項

▶ 解析力学や場の理論で,部分積分で境界項はほとんどの場合 あっさり無視

▶ 例外、(Dirac, t'Hooft-Polyakov) モノポール、

J. M. Kosterlitz, and D.J. Thouless: Journal of Physics C 6 p. 1181-1203 (1973).

- ▶ 長距離秩序が全くないのに,相転移が起きることがある. 2次元 XY 模型,超伝導薄膜,2次元結晶(超伝導薄膜は複 素数のオーダーパラメーター U(1) だが, XY モデル O(2)と 同じく連続的対称性)
- ▶ 注:2次元以下で連続的対称性の系で長距離秩序が無い証明 (Mermin-Wagner (1966))
- ▶ But, 2次元 XY 模型の低温展開では,相関関数がべき乗的で,相関距離発散 ← 2次元のグリーン関数は対数
- ▶ 高温展開(相関距離有限)とは矛盾
- 見落とし、トポロジカルな励起(渦)
- Berezinskii: Sov. Phys. JETP, 32, p.493 (1971); Sov. Phys. JETP, 34, p.610 (1972)

の寄与も大事だが、ノーベル賞を出すことが不可能だった。

BKT 転移と繰り込み群

Kosterlitz (1973) 繰り込み群

- Kosterlitz-Thouless (1973) でも繰り込み群の計算をしている が、間違っていた
- ▶ Kosterlitz (1974) で繰り込み群の正確な計算

J. M. Kosterlitz: J. Phys. C, 7, pp. 1046-1060 (1974).

▶ 近藤効果の繰り込み群との対比

Anderson-Yuval :Phys. Rev. Lett, **23**, (1969) 89; Anderson-Yuval-Hamann :Phys. Rev. B, **1**, (1970) 4464 近藤効果の問題を2次元古典クーロンガスに帰着させ、繰り 込み群を計算 うーん、繰り込み群の計算をノーベル賞の理由に含まなかっ

たのはこのためか。

Haldane 予想

F.D.M. Haldane: Phys. Letters A, **93**, p.464 (1983); Physical Review Letters, **50**, p.1153 (1983)

- ▶ 1950-1970年代 1次元スピン鎖でS=1/2の厳密解,ボゾン化の方法 エネルギーギャップは無く,相関関数は冪的挙動 → この結果はあらゆるスピンで正しいと思われていた.
- ▶ 1次元ハイゼンベルクスピン鎖で整数と半整数スピンの違い 整数スピンでは,エネルギーギャップあり,相関関数は指数 関数的挙動
- 部分積分で境界項をよく調べると,無視できないことがある (トポロジカル項).
 この項は,整数スピンと半整数スピンでは影響が違う.
- 境界に特徴(エッジ状態)

量子ホール効果と TKNN

D. J. Thouless, Mahito Kohmoto, M.P. Nightingale, and M Den Nijs: Physical Review Letters, 49(6):405, (1982) 量子ホール効果の説明,トポロジカルなチャーン数 磁場が無い場合にも応用可能な形式 (スピンホール効果など),

トポロジーについて

- 1. 何らかの形を連続変形しても保たれる性質に焦点
- 2. 例 1. マグカップとドーナツの動画
- 3. 例 2. 回転数—(winding number)

Figure: 左: 参数 -2, 中: -1, 右: 0

Figure: 左:1, 中: 2, 右: 3

3. 例 2. 回転数の続き (数学や物理での例)

3.1 微分幾何学 (ベクトル解析)

$$\frac{1}{2\pi} \oint_C \left(\frac{x}{r^2} dy - \frac{y}{r^2} dx\right) \tag{1}$$

3.2 複素関数論 (コーシーの積分定理)

$$\frac{1}{2\pi i} \oint_C \frac{dz}{z-a} \tag{2}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

3.3 磁束の量子化(超伝導),渦の量子化(超流動)

2次元古典XY モデル

XY モデル:

$$H_{XY} = -J \sum_{\langle i,j \rangle} S_i \cdot S_j = -J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j)$$
(3)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

(ここで, $\theta_j (0 \le \theta_j < 2\pi)$ は $S_j \equiv (\cos \theta_j, \sin \theta_j)$ で定義した. さらに和 < i, j >は最近接格子間でとっている)

これは,薄膜超流動や超伝導のモデルでもある.

2次元XY モデルの渦

2次元 XY モデルでの励起では,トポロジカルな渦が特徴

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

2次元XY モデルの渦 渦 (vortex) と反渦 (anti-vortex)

1. 渦

特異点のまわりを実格子で1周する時,XYスピンが同じ向 きに回転する場合

2. 反渦

特異点のまわりを実格子で1周する時,XYスピンが逆向き に回転する場合

- 3. 渦や反渦の考えを一般化して,渦度(整数)が定義できる
- 4. 全てのスピンを同じ角度変化させても,渦度は変わらない

▲注▶ ▲注▶ 注 のへの

2次元XY モデルの BKT 転移

1. 低温相

スピンがほぼ揃っている

2. 高温相

スピン秩序は無い,

3. 注意!

高温相でも低温相でも長距離秩序は無い.

2次元XY モデルの BKT 転移

1. 低温相

スピンがほぼ揃っている

2. 高温相

スピン秩序は無い,スピン相関は指数関数的に減衰

3. 注意!

高温相でも低温相でも,2次元では長距離秩序は無い. 高温相と低温相の違いは,スピン相関が早く減衰(指数関数 的減衰)するか,ゆっくり減衰するか(べき乗的減衰)

BKT 転移2

1. 従来の相転移

$$\langle \boldsymbol{S}(\boldsymbol{r}) \cdot \boldsymbol{S}(\boldsymbol{r'}) \rangle \approx \begin{cases} c_1 & (T < T_c) \\ c_2 |\boldsymbol{r} - \boldsymbol{r'}|^{-\eta} & (T = T_c) \\ c_3 \exp(-|\boldsymbol{r} - \boldsymbol{r'}|/\xi(T)) & (T > T_c) \end{cases}$$
(4)

1.1 低温では長距離秩序 1.2 高温では秩序はなく,相関関数は指数関数的に減衰. 1.3 臨界温度 T_c ではべき乗的減衰

2. 2次元 XY

$$\langle \mathbf{S}(\mathbf{r}) \cdot \mathbf{S}(\mathbf{r'}) \rangle \approx \begin{cases} c_1 |\mathbf{r} - \mathbf{r'}|^{-\eta(T)} & (T \le T_c) \\ c_2 \exp(-|\mathbf{r} - \mathbf{r'}|/\xi(T)) & (T > T_c) \end{cases}$$
(5)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

低温展開(スピン波近似)

(3) で,隣り合ったスピンの揺らぎが十分小さい場合 $\cos(\theta_i - \theta_j) \approx 1 - (\theta_i - \theta_j)^2/2 \approx 1 - (\nabla \theta)^2/2$ と展開できる. これをまとめると

$$H = E_0 + \frac{J}{2} \int d^2 r (\nabla \theta(\boldsymbol{r}))^2$$
(6)

 $(E_0 = 2JN$ は完全にスピンが揃った場合の基底状態エネルギー) 分配関数は $(\beta = 1/(k_{\rm B}T))$

$$Z = \exp(-\beta E_0) \int D[\theta] \exp\left(-\beta \frac{J}{2} \int d^2 r (\nabla \theta(\boldsymbol{r}))^2\right)$$
(7)

この場合の Green 関数は $abla^2 \ln(m{r}) = 2\pi\delta(m{r})$ より

$$\Gamma(\mathbf{r}'-\mathbf{r}) \equiv \langle \theta(\mathbf{r}')\theta(\mathbf{r})\rangle = \frac{1}{2\pi} \ln|\mathbf{r}-\mathbf{r}'|$$
(8)

低温展開(スピン波近似)2 ガウス積分とグリーン関数(一般論)

1.1 変数のガウス積分

$$W(h) = \int_{-\infty}^{\infty} d\theta \exp\left(-\frac{1}{2}A\theta^2 + ih\theta\right)$$
$$= (2\pi/A)^{1/2} \exp\left(-\frac{1}{2}A^{-1}h^2\right) \qquad (9)$$
$$\therefore \langle \exp(ih\theta) \rangle \equiv \frac{W(h)}{W(0)} = \exp\left(-\frac{1}{2}A^{-1}h^2\right) \qquad (10)$$

2.
$$N$$
 変数のガウス積分
確率分布関数が $\exp(-\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N} heta_{i,j} heta_{j})$ では

$$\langle \exp(i\sum_{i}h_{i}\theta_{i})\rangle = \exp\left(-\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}h_{i}(A^{-1})_{i,j}h_{j}\right) \quad (11)$$

低温展開(スピン波近似)3

ガウス積分とグリーン関数 (一般論)

3. 連続変数

確率分布関数 $\exp(-\frac{1}{2}\int\int \theta(r)A(r,r')\theta(r')d^drd^dr')$ では

$$W(h) \equiv \langle \exp(i \int h(r)\theta(r)d^d r) \rangle$$

= $\exp\left(-\frac{1}{2} \int \int h(r)A^{-1}(r,r')h(r')d^d r d^d r'\right)$ (12)

ここで A^{-1} の定義は

$$\int A^{-1}(r,r')A(r',r'')d^dr' = \delta^d(r-r'')$$
(13)

4. 以上より相関関数とグリーン関数の関係は

$$\langle \theta(\mathbf{r}')\theta(\mathbf{r})\rangle = \frac{\delta^2 W(h)}{\delta h(r_1)\delta h(r_2)} = A^{-1}(r_1, r_2)$$
 (14)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

低温展開(スピン波近似)4

元の XY 模型での相関関数は

$$S(\mathbf{r}) \cdot S(\mathbf{r}') \rangle = \langle \exp(i(\theta(\mathbf{r}) - \theta(\mathbf{r}'))) \rangle$$
$$= \exp(\frac{k_{\rm B}T}{2\pi J} \Gamma(\mathbf{r} - \mathbf{r}'))$$
$$= \left(\frac{a}{|\mathbf{r} - \mathbf{r}'|}\right)^{k_{\rm B}T/2\pi J}$$
(15)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

渦度:トポロジカルな励起

スピン波近似では $-\infty < \theta < \infty$ としていた.また, θ は1価としていた.

渦度:トポロジカルな励起

スピン波近似では $-\infty < \theta < \infty$ としていた.また, θ は1価としていた.

But, $\theta = \theta + 2\pi$ の周期性 \rightarrow 渦 (トポロジカルな励起) 渦度 v を次のように定義する

$$v \equiv \frac{1}{2\pi} \oint_C d\boldsymbol{l} \cdot \nabla \theta(\boldsymbol{r})$$
 (16)

ここで $oldsymbol{S}(oldsymbol{r})(=\exp(i heta(oldsymbol{r})))$ は一価関数なので v=n (n:整数)

孤立した単一の渦については,

$$2\pi n = \oint_C d\boldsymbol{l} \nabla \cdot \boldsymbol{\theta}(\boldsymbol{r}) = 2\pi r |\nabla \boldsymbol{\theta}|$$
(17)

なので,|
abla heta| = n/rとなる. 単一の渦のエネルギーは, $|
abla heta({m r}| = n/r$ より

$$E_{vor} - E_0 = \frac{J}{2} \int d^2 r (\nabla \theta(\boldsymbol{r}))^2$$
$$= \frac{Jn^2}{2} \int_0^{2\pi} d\theta \int_a^L r dr \left(\frac{1}{r}\right)^2 = J\pi n^2 \ln \frac{L}{a} \qquad (18)$$

(L はシステムサイズ, a は格子間隔程度) つまり,単一の渦のエネルギーは,サイズ無限大で対数発散

渦(渦度+1)と反渦(渦度-1)でペアを作るとエネルギーは有限に 収まる (全体としての渦度は0なので)

渦対のエネルギーは大体

$$2\pi J \ln\left(\frac{r}{a}\right) \tag{19}$$

(r は渦対の間隔) 低温相ではスピン波近似 + (熱的に励起された)渦対 温度が上昇すると.渦対が解離して,バラバラな渦になった方が エントロピー的には有利

単一の渦の自由エネルギーは

$$F = E - TS \approx J\pi \ln\left(\frac{L}{a}\right) - k_{\rm B}T \ln\left(\frac{L^2}{a^2}\right)$$
(20)

 $T_{KT} \approx J\pi/(2k_{\rm B})$ でエネルギーとエントロピーがバランスして相転移

渦による寄与を定量的に扱おう.そのために双対場を導入する.

$$S = \frac{1}{2g} \int (\partial_{\mu}\theta)^2 d^2x, \quad (\theta \equiv \theta + 2\pi)$$
(21)

 θ をスピン波成分 θ_{sw} と渦の成分 θ_{vortex} に分離する.

$$\theta(\boldsymbol{x}) = \theta_{sw}(\boldsymbol{x}) + \theta_{vortex}(\boldsymbol{x})$$
 (22)

$$\oint d\theta_{sw}(\boldsymbol{x}) = 0, \tag{23}$$

$$\oint d\theta_{vortex}(\boldsymbol{x}) = v \quad (v : \boldsymbol{\underline{\mathbf{x}}}\boldsymbol{\underline{\mathbf{x}}})$$
(24)

渦の変数に対して双対場 ψ を導入

$$\epsilon_{\mu\nu}\partial_{\nu}\psi = \partial_{\mu}\theta_{vortex} \tag{25}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(複素関数の実部と虚部の関係)

グリーンの定理を使うと

$$v = \oint d\theta_{vortex}(\boldsymbol{x}) = -\frac{1}{2\pi} \int \nabla^2 \psi d^2 x$$
 (26)

である.したがって

$$\nabla^2 \psi = -2\pi \sum_j v_j \delta(\boldsymbol{x} - \boldsymbol{x}_j) \quad (v_j : \boldsymbol{\underline{8}} \boldsymbol{\underline{3}})$$
(27)

2次元の Green 関数は $rac{1}{2\pi}\ln|x|$ であるので,

$$\psi(\boldsymbol{x}) = -2\pi \sum_{j} v_{j} \frac{1}{2\pi} \ln |\boldsymbol{x} - \boldsymbol{x}_{j}| = -\sum_{j} v_{j} \ln |\boldsymbol{x} - \boldsymbol{x}_{j}| \quad (28)$$

元の渦の変数では

$$\theta_{vortex}(\boldsymbol{x}) = -Im \sum_{j} v_{j} \ln(\boldsymbol{x} - \boldsymbol{x}_{j})$$
(29)

(複素数を使うと表示が簡便に)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2D Coulomb gas

渦どうしの相互作用にたいする Action は

$$S_{vortex} = -\frac{2\pi}{2g} \sum_{i,j} v_i v_j \ln|z_i - z_j|$$
(30)

(2 次元クーロンガス (対数ポテンシャル)) スピン波成分と渦の成分の両方の Action を考慮して書き換える と,量子 sine-Gordon 模型の形になる

$$\mathcal{L} = \frac{1}{2g} (\nabla \chi)^2 - 2\cos(\frac{2\pi\chi}{g})$$
(31)

(この表示では, $-\infty < \chi < \infty$)

繰り込み群

2次元クーロンガスや量子 sine-Gordon 模型は,スケール変換に 対して結合定数が変化する (繰り込み). スケール変換 $\alpha \rightarrow \alpha' = \alpha \exp(dl) \approx \alpha(1 + dl)$ にたいして,

$$\frac{dy_1(l)}{dl} = -y_2^2(l)$$
$$\frac{dy_2(l)}{dl} = -y_1(l)y_2(l)$$
(32)

システムサイズ L にたいして, $l_0 = \ln L$ 様々な物理量に対数補正 $(1/\ln L)$

繰り込み群:レベルスペクトロスコピー

対数補正は収束が大変遅いので,数値計算に支障 単一の物理量の相関ではなく,複数の物理量の相関を用いると対 数補正を消去することができる.

K. Nomura: J. Phys. A, Vol. 28, pp.5451-5468 (1995); Nomura and A. Kitazawa: J. Phys. A: Vol. 31 (1998) pp.7341

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

・ロト・国・・ヨト・ヨー うんの

1次元量子スピンハイゼンベルクモデル

$$H = J \sum_{j} S_{j} \cdot S_{j+1}$$
(33)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- ▶ 基底状態は Néel 状態に近いが,長距離秩序は無い.
- ▶ 半整数スピン (S=1/2,3/2,...)と整数スピン (S=1,2,...)の 違い
- ▶ 波数0と π のモードが重要

非線形シグマ模型

$$\frac{1}{2g} \int dt dx \left(\frac{1}{v} \left(\frac{\partial \varphi}{\partial t} \right)^2 - v \left(\frac{\partial \varphi}{\partial x} \right)^2 \right)$$
$$(\varphi \equiv (\varphi_1, \varphi_2, \varphi_3), \ \varphi^2 = 1)$$
(34)

Wick 回転すると

$$\frac{1}{2g}\int dx^2 (\nabla \varphi)^2 \tag{35}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

(2次元古典ハイゼンベルクモデルと等価)

非線形シグマ模型

$$\frac{1}{2g} \int dt dx \left(\frac{1}{v} \left(\frac{\partial \varphi}{\partial t} \right)^2 - v \left(\frac{\partial \varphi}{\partial x} \right)^2 \right)$$
$$(\varphi \equiv (\varphi_1, \varphi_2, \varphi_3), \ \varphi^2 = 1)$$
(34)

Wick 回転すると

$$\frac{1}{2g}\int dx^2 (\nabla \varphi)^2 \tag{35}$$

(2次元古典ハイゼンベルクモデルと等価)
 一見すると, massless(gapless)の自由場のモデルのように見える

非線形シグマ模型

$$\frac{1}{2g} \int dt dx \left(\frac{1}{v} \left(\frac{\partial \varphi}{\partial t} \right)^2 - v \left(\frac{\partial \varphi}{\partial x} \right)^2 \right)$$
$$(\varphi \equiv (\varphi_1, \varphi_2, \varphi_3), \ \varphi^2 = 1)$$
(34)

Wick 回転すると

$$\frac{1}{2g}\int dx^2 (\nabla \varphi)^2 \tag{35}$$

(2次元古典ハイゼンベルクモデルと等価) 一見すると, massless(gapless)の自由場のモデルのように見える But $\varphi^2 = 1$ と言う制約のため,エネルギーギャップ生成

非線形シグマ模型

- ▶ 繰り込み群
- インスタントン(後で述べるトポロジカル項と関連) 低温では無限遠で
 φ が揃う
 → 平面の無限遠点を同一視して球面とみなせる
 → 球面から球面への写像

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

非線形シグマ模型

- ▶ 繰り込み群
- インスタントン(後で述べるトポロジカル項と関連) 低温では無限遠で
 φ が揃う
 → 平面の無限遠点を同一視して球面とみなせる
 → 球面から球面への写像

Figure: これを量子化するとインスタントン (ネタです)

どちらからも gap 生成

非線形シグマ模型

- 繰り込み群
- インスタントン (後で述べるトポロジカル項と関連) 低温では無限遠で
 φ が揃う
 → 平面の無限遠点を同一視して球面とみなせる
 → 球面から球面への写像

Figure: これを量子化するとインスタントン (ネタです)

どちらからも gap 生成 元々は 4 次元 Yang-Mills 場 (非可換ゲージ場)の非摂動解を調べる ため,簡略化したものとして 2 次元非線形シグマ模型を導入 Haldane 予想: ハイゼンベルクから非線形シグマへ ハイゼンベルクモデルを連続体近似, 波数 0 と π のモードに注目 する.

$$\hat{\varphi}_{2i} \equiv \frac{1}{2s} (\hat{S}_{2i+1} - \hat{S}_{2i})$$
$$\hat{l}_{2i} \equiv \frac{1}{2a} (\hat{S}_{2i+1} + \hat{S}_{2i})$$
(36)

交換関係は $a \rightarrow 0, s \rightarrow \infty$ の極限で

$$[\hat{l}^{a}(x), \hat{l}^{b}(y)] = i\epsilon^{abc}\hat{l}^{c}\delta(x-y)$$

$$[\hat{l}^{a}(x), \hat{\varphi}^{b}(y)] = i\epsilon^{abc}\hat{\varphi}^{c}\delta(x-y)$$

$$[\hat{\varphi}^{a}(x), \hat{\varphi}^{b}(y)] = i\epsilon^{abc}\hat{l}^{c}\frac{a^{2}}{s^{2}}\delta(x-y) \to 0$$
(37)

ここで

$$\delta(x-y) = \lim_{a \to 0} \frac{\delta_{x,y}}{a}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

交換関係以外に,直交関係

$$\hat{\varphi}_{2i} \cdot \hat{l}_{2i} = \frac{1}{2s} (\hat{S}_{2i+1} - \hat{S}_{2i}) \cdot \frac{1}{2a} (\hat{S}_{2i+1} + \hat{S}_{2i}) = \frac{1}{2sa} (\hat{S}_{2i+1}^2 + \hat{S}_{2i+1} \cdot \hat{S}_{2i} - \hat{S}_{2i+1} \cdot \hat{S}_{2i} - \hat{S}_{2i}^2) = 0$$
(38)

および $\hat{\varphi}$ はほぼ単位ベクトル

$$(\hat{\varphi}_{2i})^2 = \frac{1}{4s^2} [\hat{S}_{2i}^2 + \hat{S}_{2i+1}^2 - 2\hat{S}_{2i} \cdot \hat{S}_{2i+1}]$$

= $\frac{1}{4s^2} [2\hat{S}_{2i}^2 + 2\hat{S}_{2i+1}^2 - 4a^2(\hat{l}_{2i}))^2]$
= $1 + 1/s - a^2\hat{l}/s^2$ (39)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

である.

$$\hat{S}_{2i} \cdot \hat{S}_{2i+1} = 2a^{2} \hat{l}_{2i}^{2} + s(s+1)$$
(40)
$$\hat{S}_{2i-1} \cdot \hat{S}_{2i} = -s^{2} \hat{\varphi}_{2i-2} \cdot \hat{\varphi}_{2i}
- as \left[\hat{l}_{2i-2} \cdot \hat{\varphi}_{2i} - \hat{\varphi}_{2i-2} \cdot \hat{l}_{2i} \right]
+ a^{2} \hat{l}_{2i-2} \cdot \hat{l}_{2i}
\approx a^{2} \left(2s^{2} (\hat{\varphi}')^{2} - 2s (\hat{l} \cdot \hat{\varphi}' + \hat{\varphi}' \cdot \hat{l}) + 2\hat{l}^{2} \right)
- s(s+1) - 2a^{2} s^{2} (\hat{\varphi} \cdot \hat{\varphi}')'$$
(41)

(ここで, $\hat{\varphi}^2 = 1 + 1/s - a\hat{l}^2/s^2$ と, $\hat{\varphi}''\hat{\varphi} = (\hat{\varphi}'\hat{\varphi})' - (\hat{\varphi}')^2$ を使った.)

$$\hat{H} = \frac{aJ}{2} \int dx [4\hat{\boldsymbol{l}}^2 + 2s^2(\hat{\boldsymbol{\varphi}}')^2 - 2s(\hat{\boldsymbol{l}} \cdot \hat{\boldsymbol{\varphi}}' + \hat{\boldsymbol{\varphi}}' \cdot \hat{\boldsymbol{l}})]$$
(42)

書き換えると

$$\hat{H} = \int dx \hat{\mathcal{H}}, \qquad (43)$$
$$\hat{\mathcal{H}} = \frac{v}{2} \left[g \left(\hat{l} - \frac{\theta}{4\pi} \hat{\varphi}' \right)^2 + \frac{(\hat{\varphi}')^2}{g} \right] \qquad (44)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ここで , $v=2Jas,\;g=2/s,\;\theta=2\pi s$

Hamiltonian 密度 (44) はつぎの Lagrangian 密度

$$\mathcal{L} = \frac{1}{2g} \partial_{\mu} \hat{\varphi} \partial^{\mu} \hat{\varphi} + \frac{\theta}{8\pi} \epsilon^{\mu\nu} \hat{\varphi} \cdot (\partial_{\mu} \hat{\varphi} \times \partial_{\nu} \hat{\varphi}) = \frac{1}{2g} (\partial_{0} \varphi \partial_{0} \varphi - \partial_{1} \varphi \partial_{1} \varphi) + \frac{\theta}{4\pi} \varphi \cdot (\partial_{0} \varphi \times \partial_{1} \varphi)$$
(45)

から得られる (簡単のため v = 1 とした) [証明]

この場合の運動量密度は

$$\mathbf{\Pi} \equiv \frac{\partial \mathcal{L}}{\partial(\partial_0 \varphi)} = \frac{1}{g} \partial_0 \varphi + \frac{\theta}{4\pi} (\partial_1 \varphi \times \varphi)$$
(46)

ハミルトニアン密度は(次ページ)

ハミルトニアン密度は

$$\mathcal{H} \equiv \partial_0 \varphi \cdot \mathbf{\Pi} - \mathcal{L}$$

= $\frac{g}{2} \left(\varphi \times \mathbf{\Pi} - \frac{\theta}{4\pi} (\partial_1 \varphi) \right)^2 + \frac{1}{2g} (\partial_1 \varphi)^2$ (47)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

ここで $l\equiv arphi imes \Pi$ とすると ,

$$\hat{H} = \frac{v}{2} \int dx \left[g \left(\hat{l} - \frac{\theta}{4\pi} \hat{\varphi}' \right)^2 + \frac{(\hat{\varphi}')^2}{g} \right]$$

Q.E.D.

得られた Lagrangin 密度を Wick 回転して Euclid 計量に直すと

$$\mathcal{L} = \frac{1}{2g} \partial_{\mu} \hat{\varphi} \partial^{\mu} \hat{\varphi} + \frac{i\theta}{8\pi} \epsilon^{\mu\nu} \hat{\varphi} \cdot (\partial_{\mu} \hat{\varphi} \times \partial_{\nu} \hat{\varphi}) = \frac{1}{2g} (\partial_{0} \varphi \partial_{0} \varphi - \partial_{1} \varphi \partial_{1} \varphi) + \frac{\theta}{4\pi} \varphi \cdot (\partial_{0} \varphi \times \partial_{1} \varphi)$$
(48)

真空期待値は(経路積分の形で)

$$Z = \int \mathcal{D}\varphi \exp\left(-\int d^2 x \mathcal{L}\right)$$
(49)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Haldane 予想:トポロジカル項

前の結果には,非線形シグマ模型の項 $(S_0$ とあらわす)に加え,

$$Q = \frac{1}{8\pi} \int d^2 x \epsilon^{\mu\nu} \hat{\boldsymbol{\varphi}} \cdot (\partial_\mu \hat{\boldsymbol{\varphi}} \times \partial_\nu \hat{\boldsymbol{\varphi}})$$
(50)

がついていた (トポロジカル項). この項は整数値をとる. ユークリッド表示で $\exp(S_0 + i\theta Q)$ であり, $\theta = 2\pi s$ を考慮すると,

- ▶ 整数スピンではトポロジカル項の寄与は無く,単純な非線形
 シグマ模型 → gapped
- ▶ 半整数スピンではトポロジカル項の寄与で,gapless

Haldane 予想:トポロジカル項2

トポロジカル項が整数ということを示す. $\varphi = (\sin \alpha \cos \beta, \sin \alpha \sin \beta, \cos \alpha)$ と変数変換すると

$$Q = \frac{1}{8\pi} \int d^2 x \epsilon^{\mu\nu} \hat{\varphi} \cdot (\partial_\mu \hat{\varphi} \times \partial_\nu \hat{\varphi})$$

$$= \frac{1}{4\pi} \int d^2 x \sin \alpha \epsilon^{\mu\nu} \partial_\mu \alpha \partial_\nu \beta$$

$$= \frac{1}{4\pi} \int \sin \alpha \frac{D(\alpha, \beta)}{D(x_0, x_1)} dx_0 dx_1$$

$$= \frac{1}{4\pi} \int dS_{\text{int}}$$
(51)

$$(rac{D(lpha,eta)}{D(x_0,x_1)}$$
 はヤコビアン)
結論:球面から球面への連続写像 $o Q$ は整数

インスタントン

インスタントン:トポロジカル数 Q を固定したときの最小作用解

$$\partial_{\mu}\boldsymbol{\varphi} + \epsilon_{\mu\nu}(\boldsymbol{\varphi} \times \partial_{\nu}\boldsymbol{\varphi}) = 0 \tag{52}$$

 $arphi^1=1$ を考慮して,次の複素数wを導入(球面から複素平面へ)

$$w = \frac{\varphi_1 + i\varphi_2}{1 + \varphi_3} \tag{53}$$

Figure: 球面から複素平面への投影

インスタントン2

すると (52) は

$$\partial_{\bar{z}}w = 0, \quad (z = x_0 + ix_1) \tag{54}$$

したがってインスタントン解は

$$w(z) = \prod_{j=1}^{Q} \frac{z - a_j}{z - b_j}$$
(55)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Haldane 予想:半整数スピン

非線形シグマ模型を使った説明では,整数スピンの場合はギャッ プが生じるのが自然だが,半整数スピンでギャップレスになるの は分かりにくい 他の方法

- 1. S=1/2 Bethe 仮説による厳密解
- 2. それ以外の半整数スピン (S=3/2,5/2,···) Lieb-Schultz-Mattis

I.Affleck, E.H. Lieb: Lett. Math. Phys, p. 57 (1986)

Haldane 予想:整数スピン

Haldane 予想とは独立な検証

- 1. 数値計算
- 2. 実験

3. AKLT(Affleck-Kennedy-Lieb-Tasaki)

I. Affleck, T. Kennedy, E.H.Lieb, H.Tasaki: Physical Review Letters. 59, p.799(1987) .

まとめ

- 1. トポロジー
 - 1.1 BKT 転移の渦は,円周上のトポロジー
 - Haldane 予想は,球面から球面へのトポロジー (量子力学の回転と運動量,被覆群)
 - 1.3 この講演では触れなかったが, TKNN(Thouless-Kohmoto-Nightingale-denNijs) はトーラス上 のトポロジー

- 格子構造,双対性 連続なモデルで扱っているが,実は格子構造が重 要?(Umklapp 過程),双対性で十分?
- 3. トポロジーの性質は摂動に対して安定
- 関連した発展
 - 4.1 スピンホール効果
 - 4.2 SPTP
 - 4.3 グラフェン
 - 4.4 トポロジカル絶縁体
 - 4.5 トポロジカル半金属

まとめ2

学部生へ

- 1. 複素関数論 積分路, リーマン面, 分岐線, リーマン球面 ↔ トポロジーとの関連
- ガウス積分 統計力学だけでなく,場の量子論(経路積分)で大事

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ヨ ● の Q @

3. グリーン関数