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Introduction

Critical phenomena are one of the important subjects in condensed
matter physics. Many developments about critical phenomena, such as
renormalization group, numerical methods etc. have been done. But,
when the model has a multicritical point, the scaling behaviors become
difficult due to the interference of multiple critical lines. So, conventional
numerical methods are not useful near a multicritical point.
We have studied several multicritical phenomena combining with the
conformal field theory (CFT) and numerical methods (level spectroscopy
etc). And we discuss the relation with the duality, such as the
Kramers-Wannier duality and the Ashkin-Teller self-duality.
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Introduction

Topics about multicritical phenomena:

1. bifurcation at c=3/2 CFT to the two c=1 CFT lines
(Takhtajan-Babujian)

2. bifurcation of c=1 CFT to the two c=1/2 CFT lines (Ashkin-Teller)

3. crossing of c=1 CFT (TLL) with c=1/2 CFT (Schulz multicritical
point)
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S=1 BLBQ chain with bond-alternation

A. Kitazawa and K. N. : Phys. Rev. B 59,pp.11358 (1999)

1D S=1 Bilinear-Biquadratic model with bond-alternation

Ĥ =

L∑
j=1

(1− (−1)jδ)
(
cos θŜjŜj+1 + sin θ(ŜjŜj+1)

2
)

(1)

1. θ = −π/4 and δ = 0: Takhtajan-Babujian (TB) point
Bethe Ansatz solvable, massless, c=3/2 Conformal field theory
(CFT) or SU(2) level 2 Wess-Zumino-Witten (WZW) model

2. θ < −π/4 and δ = 0:
dimer order, two-fold degenerate

3. θ > −π/4:
there are two c=1 CFT critical lines
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S=1 BLBQ chain with bond-alternation

Phase diagram of 1D S=1 BLBQ with bond-alternation

Figure: Phase diagram
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S=1 BLBQ chain with bond-alternation

Figure: energies of TBC

Twisted boundary condition(TBC)

Ŝx
L+j = −Ŝx

j , Ŝ
y
L+j = −Ŝy

j , Ŝ
z
L+j = Ŝz

j . (2)

A. Kitazawa: J. Phys. A 30, L285 (1997)
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S=1 BLBQ chain with bond-alternation

Figure: TBC crossing lines at various sizes

relevant scaling dimensions: x = 3/8 and x = 1
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S=1 BLBQ chain with bond-alternation

Figure: Effective central charge

Eg(L)

L
= eg −

πvc

6L2
(3)

▶ eg, energy per one site
▶ v:”sound velocity”
▶ c: central charge, universal
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Ashkin-Teller and S=1/2 bond-alternating XXZ chain
M. den Nijs, M. Kohmoto and L. P. Kadanoff: Phys. Rev. B 24 pp. 5229 (1981)

2D classical Ashkin-Teller model

H =
∑
i,j

(K1SiSj +K2TiTj +K3SiSjTiTj), (Si = ±1, Ti = ±1) (4)

→ 1D quantum Ashkin-Teller model (transfer matrix of the 2D classical
Ashkin-Teller model)

Ĥ =

L∑
j

(σ̂z
j σ̂

z
j+1 + τ̂zj τ̂

z
j+1 + λσ̂z

j σ̂
z
j+1τ̂

z
j τ̂

z
j+1)−

L∑
j

(σ̂x
j + τ̂xj + λσ̂x

j τ̂
x
j )

(5)

(σ̂, τ̂ : Pauli matrices)
→ S=1/2 bond-alternating chain

Ĥ =

L∑
j=1

(1− (−1)jδ)
(
Ŝx
j Ŝ

x
j+1 + Ŝy

j Ŝ
y
j+1 +∆Ŝz

j Ŝ
z
j+1

)
(6)
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Ashkin-Teller and S=1/2 bond-alternating XXZ chain

S=1/2 bond-alternating chain

Ĥ =
L∑

j=1

(1− (−1)jδ)
(
Ŝx
j Ŝ

x
j+1 + Ŝy

j Ŝ
y
j+1 +∆Ŝz

j Ŝ
z
j+1

)

▶ Berezinskii-Kosterlitz-Thouless (BKT) transition on δ = 0 line

▶ scaling dimensions at δ = 0,∆ = 1 point: x = 2 and x = 1/2

▶ numerically difficult to caluculate multicritical lines.

11 / 36



S=1/2 bond-alternating XXZ chain
S. Moriya and K.N.: J.P.S.J. Vol. 89,093001 (2020)

Phase diagram of S=1/2 bond-alternating chain

Ĥ =

L∑
j=1

(1− (−1)jδ)
(
Ŝx
j Ŝ

x
j+1 + Ŝy

j Ŝ
y
j+1 +∆Ŝz

j Ŝ
z
j+1

)

Figure: Phase diagram
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S=1/2 bond-alternating XXZ chain

Ĥ = β

L/2∑
j=1

(
Ŝx
2jŜ

x
2j+1 + Ŝy

2jŜ
y
2j+1 +∆Ŝz

2jŜ
z
2j+1

)

+

L/2∑
j=1

(
Ŝx
2j−1Ŝ

x
2j + Ŝy

2j−1Ŝ
y
2j +∆Ŝz

2j−1Ŝ
z
2j

)
(7)

(β = (1− δ)/(1 + δ))
In ∆ → ∞, β → 0,∆β = O(1) limit, the main contribution of the
Hamiltonian is the ∆Ŝz

2j−1Ŝ
z
2j term.

| ↑2j−1, ↓2j⟩ = | ↑′j⟩
| ↓2j−1, ↑2j⟩ = | ↓′j⟩ (8)

Pertubative Hamiltonian:

Ĥ1 = β∆

L/2∑
j=1

Ŝz
2jŜ

z
2j+1 +

L/2∑
j=1

(
Ŝx
2j−1Ŝ

x
2j + Ŝy

2j−1Ŝ
y
2j

)

= β∆

L/2∑
j=1

Ŝz
2jŜ

z
2j+1 +

1

2

L/2∑
j=1

(
Ŝ+
2j−1Ŝ

−
2j + Ŝ−

2j−1Ŝ
+
2j

)
(9)
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S=1/2 bond-alternating XXZ chain

Ŝz
2j+1| ↑′j+1⟩ =

1

2
| ↑′j+1⟩

Ŝz
2j+1| ↓′j+1⟩ = −1

2
| ↓′j+1⟩

Ŝz
2j | ↑′j⟩ =

1

2
| ↑′j⟩

Ŝz
2j | ↓′j⟩ = −1

2
| ↓′j⟩ (10)

and

Ŝ+
2j−1Ŝ

−
2j | ↓

′
j+1⟩ = | ↑′j+1⟩

Ŝ+
2j−1Ŝ

−
2j | ↑

′
j+1⟩ = | ↓′j+1⟩ (11)
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S=1/2 bond-alternating XXZ chain

In summary, the effective Hamiltonian:

Ĥ ′ =

L/2∑
j=1

(
−β∆Ŝ′z

j Ŝ′z
j+1 + Ŝ′x

j

)
(12)

By operating exp(iπ
∑

Ŝ′z
j ), this is equivalent with the Transverse Field

Ising (TFI) model:

Ĥ ′ = β∆

L/2∑
j=1

(
−Ŝ′z

j Ŝ′z
j+1 − γŜ′x

j

)
, (γ ≡ 1

β∆
) (13)

(TFI model comes from the transfer matrix of the classical 2D Ising
model).
Note that γ = 1 is a critical point with 2D Ising type.
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TFI model, Kramers-Wannier duality and boundary
condition

Ĥ ′ = −
L/2−1∑
j=1

Ŝ′z
j Ŝ′z

j+1 − gŜ′z
L/2Ŝ

′z
1 − γ

L/2∑
j=1

Ŝ′x
j , (14)

(g = 1:periodic boundary condition (PBC), g = −1:antiperiodic boundary
condition (ABC)).
From duality (using Jordan-Wigner type transformation), one obtain

E0(L, g = 1, Uy
π = −1) = E0(L, g = −1, Uy

π = 1) + 2(γ − 1) (15)

Thus one can determine the critical point with the crossing

E0(L, g = 1, Uy
π = −1) = E0(L, g = −1, Uy

π = 1) (16)
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1D BA XXZ model and BC

z-axis twisted boundary condition (zTBC):

Ŝx
L+j = −Ŝx

j , Ŝ
y
L+j = −Ŝy

j , Ŝ
z
L+j = Ŝz

j . (17)

y-axis BC (yTBC):

Ŝx
L+j = −Ŝx

j , Ŝ
y
L+j = Ŝy

j , Ŝ
z
L+j = −Ŝz

j . (18)

1. PBC,zTBC of the 1D BA XXZ ↔ g = 1 of the 1D TFI

2. yTBC of the 1D BA XXZ ↔ g = −1 of the 1D TFI

Thus, in 1D BA XXZ,

EPBC
0 (M = 0, Uy

π = −1) = EyTBC
0 (M = even, Uy

π = 1) (19)

or

EzTBC
0 (M = 0, Uy

π = −1) = EyTBC
0 (M = even, Uy

π = 1) (20)
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1D BA XXZ model and BC

On δ = 0 we can show

EzTBC
0 (L,M = 0, Uy

π = −1) = EzTBC
0 (L,M = 0, Uy

π = 1) (21)

Thus, at δ = 0 and ∆ = 1 (isotropic) point,

EzTBC
0 (M = 0, Uy

π = −1) = EyTBC
0 (M = even, Uy

π = 1) (22)
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S=1/2 bond-alternating XXZ chain

Figure: energies of each BC
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S=1/2 bond-alternating XXZ chain

Figure: Comparison between yTBC-PBC and yTBC-zTBC 20 / 36



S=1/2 bond-alternating XXZ chain

Figure: Comparison between yTBC-PBC and yTBC-zTBC
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S=1 XXZ with single ion anisotropy
S=1 XXZ + single ion anisotropy chain

H =
∑
j

(
Sx
j S

x
j+1 + Sy

j S
y
j+1 +∆Sz

j S
z
j+1 +D(Sz

j )
2
)

(23)

W. Chen, K. Hida and C. Sanctuary. : Phys. Rev. B 67,pp.104401 (2003)
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Bosonization by Schulz(1986)

H.J.Schulz: Phys. Rev. B Vol. 34 (1986) pp.6372

1. correlation functions in the XY1 phase

⟨S+
j S−

j+r⟩ = C⊥ exp(iπr)|r|−η (24)

⟨(S+
j )2(S−

j+r)
2⟩ = C⊥2|r|−η2 (25)

⟨Sz
j S

z
j+r⟩ = Cz|r|−2 +Dz exp(iπr) exp(−|r|/ξ) (26)

(η2 = 4η and 0 < η ≤ 1/4.)

2. correlation functions in the XY2/nTLL phase

⟨S+
j S−

j+r⟩ = C⊥ exp(iπr) exp(−|r|/ξ′) (27)

⟨(S+
j )2(S−

j+r)
2⟩ = C⊥2|r|−η2 (28)

⟨Sz
j S

z
j+r⟩ = Cz|r|−2 +Dz exp(iπr)|r|−ηz (29)

(ηz = 1/η2 and 0 < η2 ≤ 1.)

23 / 36



Bosonization by Schulz(1986)

1. XY1-Haldane phase boundary: BKT transition

2. Haldane-Neel phase boundary: 2D Ising type Universality class

3. XY2/nTLL-Neel phase boundary: BKT transition

4. Haldane, Neel, XY1 and XY2/nTLL phases should cross at one point
“Schulz multicritical point”
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Hidden SU(2) symmetry in S=1/2 XY spin ladder system
and S=1 XY spin chain

A. Kitazawa, K. Hijii and KN: J. Phys. A, Vol. 36 (2003) L351

▶ S=1 XY + single ion anisotropy chain

H = J
∑
j

Sx
j S

x
j+1 + Sy

j S
y
j+1 +D

∑
j

(Sz
j )

2 (30)

▶ S=1/2 XY quantum spin ladder system

H = Jleg
∑
j

(Sx
1,jS

x
1,j+1 + Sy

1,jS
y
1,j+1 + Sx

2,jS
x
2,j+1 + Sy

2,jS
y
2,j+1)

+ Jdia
∑
j

(Sx
1,jS

x
2,j+1 + Sy

1,jS
y
2,j+1 + Sx

2,jS
x
1,j+1 + Sy

2,jS
y
1,j+1)

+ Jrung,xy
∑
j

(Sx
1,jS

x
2,j + Sy

1,jS
y
2,j) + Jrung,z

∑
j

Sz
1,jS

z
2,j (31)

There is a hidden SU(2) symmetry in S=1/2 spin ladder system and S=1
XY chain.
↔ BKT transition (in the case of massless)
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Hidden SU(2) symmetry

▶

s̃±j ≡ 1

2
(S±

j )2, s̃zj ≡ 1

2
Sz
j (32)

▶ Commutation relations

[s̃zj , s̃
±
k ] = δj,ks̃

±
k (33)

[s̃+j , s̃
−
k ] = 2δj,ks̃

z
k (34)

(∵ [(S+
j )2, (S−

j )2] = −8(Sz
j )

3 + 4(2S2 + 2S − 1)Sz
j and

(Sz
j )

3 = Sz
j (forS = 1) )

▶ s̃±j , s̃
z
j satisfy an SU(2) algebra.
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Hidden SU(2) symmetry

Although the operator
∑

j s̃
z
j commutates with the S=1 XY

Hamiltonian, the operators
∑

j s̃
±
j do not commutate with Hamiltonian.

▶ Thus, we do a following nonlocal transformation

s±j =
1

2
(S±)2Uj , s

z
j =

1

2
Sz
j (= s̃zj ) (35)

where

U1 = 1, Uj =

j−1∏
l=1

(
1− 2(Sz

l )
2
)
= exp(iπ

j−1∑
l=1

Sz
l ) (j > 1) (36)

▶ The operators s±j , s
z
j satisfy an SU(2) algebra.

▶ One can prove that s±T ≡
∑L

j=1 s
±
j and szT ≡

∑L
j=1 s

z
j commutate

with S=1 XY chain with open boundary condition.
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Hidden SU(2) symmetry

▶ But S=1 XY model with the periodic boundary condition (PBC)
does not commutate.

▶ Combining the twisted boundary condition (TBC), one can prove
the hidden SU(2) symmetry in the S=1 XY chain.

H =
J

2

L−1∑
j

(S+
j S−

j+1 + S−
j S+

j+1)

+
J ′

2
(S+

LS−
1 exp(∓i

π

2
Sz
T ) + S−

L S+
1 exp(±i

π

2
Sz
T )) (37)

▶ The energy for magnetization M = 4n(n: integer) under PBC is
degenerate with that for magnetization M = 4n+ 2 under TBC.

▶ One can also discuss the space inversion and the wave number.
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Universality class of nTLL phase
central charge c=1 conformal field theory(CFT)

Figure: effective central charge

▶ Region ∆AF ≤ 0: c = 1
▶ Region ∆AF > 0: c < 1 and c decreases as size L

Fig. 9 means that the region ∆AF ≤ 0 belongs to the c=1 CFT
universality.
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Universality class of nTLL phase
Numerical results for scaling dimensions.

1. ∆E(M = 1, q = π): massive

2. ∆E(M = 2, q = 0),∆E(M = 4, q = 0): massless

3. ∆E(M = 4, q = 0)/∆E(M = 2, q = 0) = 4,

4. ∆E(M = 0, q = π): massless

5. Scaling dimensions are consistent with TLL model (one parameter
scaling or TL parameter K).

K =

√
∆E0(L;TBC;m = 0, P = −1)

∆E0(L;PBC;m = 2, P = 1)
(38)

6. TL-parameter K is consitent with the perturbative mapping (S=1/2
XXZ).

H =
∑
j

(
Sx
j S

x
j+1 + Sy

j S
y
j+1 +∆Sz

j S
z
j+1

)
, (39)

K =
π

arccos(−∆)
(40)

They are consistent with XY2 phase by Schulz (1986).
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Universality class of nTLL phase

1. Exponential quasi-degeneracy between PBC and TBC energies.

E0(L;TBC;m = 0, P = 1)− E0(L;PBC;m = 0, P = 1)

= C1 exp(−L/ξ1) (41)

E0(L;TBC;m = 2, P = 1)− E0(L;PBC;m = 2, P = 1)

= C2 exp(−L/ξ2) (42)

E0(L;TBC;m = 0, P = −1)− E0(L;PBC;m = 0, P = −1)

= C3 exp(−L/ξ3) (43)

1.1 numerical calculation.
1.2 perturbative mapping for S=1/2 XXZ chain.

2. The above bebavior is completely different from
∆(L;TBC)−∆(L;PBC) ∝ 1/L in S=1/2 XXZ chain and S=1
XY1 phases.
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Universality class of nTLL phase:PBC-TBC

Figure: quasi degeneracy between PBC and TBC (nTLL phase),
ΓF = 0.5,∆AF = −0.05

Exponential quasi-degenaracy (Fig. 10semi-log)
Correlation lengths are ξ1 = 1.08, ξ2 = 1.13 ξ3 = 1.12, thus
ξ1 ≈ ξ2 ≈ ξ3.
Coefficients are C1 ≈ C2 ≈ −C3 > 0.
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Universality class of nTLL phase:PBC-TBC

6 8 10 12 14

L

-20

-18

-16

-14

-12

-10

-8

log(∆
+
)

log(∆
2
)

log(∆−)

J
F
=-1.0 J

AF
=0.1 ∆

F
=1.0 Γ

AF
=1.0 Γ

F
=0.5 ∆

AF
=0.5

Figure: quasi degeneracy between PBC and TBC (Stripe Neel phase),
ΓF = 0.5,∆AF = 0.5

Exponential quasi-degenaracy (Fig. 11semi-log)
Correlation lengths are ξ1 = 0.89, ξ2 = 0.94 ξ3 = 0.91, thus
ξ1 ≈ ξ2 ≈ ξ3.
Coefficients are C1 ≈ C2 ≈ −C3 > 0.
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Universality class of nTLL phase:PBC-TBC (perturbation)

Phase-factor between PBC-TBC: (−1)2 = 1
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Summary

1. Takhtajan-Babujian

2. Ashkin-Teller multicritical point

2.1 yTBC-zTBC method
2.2 Now checking universality class etc.

3. Schulz multicritical point

3.1 Both XY1-Haldane and nTLL(XY2)-Neel phase boundaries can be
determined from the level crossing
M = 0, P = −1 in TBC and M = ±2, P = 0 in PBC
and they are BKT transition.
One can also apply numerically these level cross for the S=1/2 spin
ladder system without rung inversion symmetry.

3.2 Universality class of the nTLL phase
▶ c=1 CFT
▶ quasi-degeneracy between TBC and PBC.
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Future problem

▶ XY1-nTLL phase boundary
level cross between

▶ M = 0, q = π in PBC and M = ±1, q = π in PBC
▶ M = 1 and M = 2 in PBC

(tentative)

▶ Universality class of the Schulz multicritical point.
c=3/2 CFT? not the SU(2) level 2 WZW.

▶ General spin S?

36 / 36


	Introduction
	Takhtajan-Babujian
	Ashkin-Teller
	Schulz multicritical point
	Bosonization(Schulz)
	Kitazawa-Hijii-Nomura
	Universality-Class

	Summary

