逆にある場合には台形則の収束性が極めて早くなる。解析的な周期関数
の1周期
に渡る積分を台形則で計算した時の誤差は、
(すべての
に対して)であるから、
Euler-Maclaurin の総和公式で、
の形の誤差はなくなり、収束が極
めて早くなる(ただし
のような振舞いをする誤差は残り得る)
[3]。
従って、収束加速法が特に必要なくなる(また、Richardson 補外の単純な応用で
は扱えない)。
課題:
1.
![]() |
(2) |
2.
![]() |
(3) |